Answer:
The ball will have a kinetic energy of 0.615 Joules.
Explanation:
Use the kinetic energy formula

The kinetic energy at the moment of leaving the hand will be 0.615 Joules. (From there on, as it ball is traveling upwards, this energy will be gradually traded off with potential energy until the ball's velocity becomes zero at the apex of the flight)
Let the Blaise runs for time "t" to complete the race
so the total distance he moved is given by

Now Issac runs for time t = "t - 2*60"
because it took rest for 2 minutes

now it is given that Blaise wins by 10 m distance




now the distance moved by Blaise is given by

To solve this problem we will apply the concept related to the conservation of the Momentum. We will then start considering that the amount of initial momentum must be equal to the amount of final momentum. Considering that all the objects at the initial moment have the same initial velocity (Zero, since they start from rest) the final moment will be equivalent to the multiplication of the mass of each object by the velocity of each object, so
Initial Momentum = Final Momentum

Here,
= mass of Raft
= Mass of swimmers 1
= Mass of swimmers 2
= Initial velocity (of the three objects)
= Velocity of Raft
Replacing,

Solving for 


Therefore the velocity the rarft start to move is 0.3618m/s
Answer
According the conservation of energy

I for ball = 




![v_i^2+[1+\dfrac{2}{3}]=2gh](https://tex.z-dn.net/?f=v_i%5E2%2B%5B1%2B%5Cdfrac%7B2%7D%7B3%7D%5D%3D2gh)



a) 


b) 


Answer:
1.718 N , attractive
Explanation:
r = 0.66 m, n = 5.7 x 10^13
q1 = 5.7 x 10^13 x 1.6 x 10^-19 = 9.12 x 10^-6 C
q2 = - 5.7 x 10^13 x 1.6 x 10^-19 = - 9.12 x 10^-6 C
F = K q1 q2 / r^2
F = 9 x 10^9 x 9.12 x 10^-6 x 9.12 x 10^-6 / (0.66)^2
F = 1.718 N
As both the charges are opposite in nature, so the force between them is attractive.