Answer:
1.8 m/s
Explanation:
Draw a free body diagram of the block. There are four forces:
Normal force Fn up.
Weight force mg down.
Applied force F to the east.
Friction force Fn μ to the west.
Sum the forces in the y direction:
∑F = ma
Fn − mg = 0
Fn = mg
Sum the forces in the x direction:
F − Fn μ = ma
F − mg μ = ma
a = (F − mg μ) / m
a = (12 N − 6 kg × 9.8 m/s² × 0.15) / 6 kg
a = 0.53 m/s²
Given:
Δx = 3 m
v₀ = 0 m/s
a = 0.53 m/s²
Find: v
v² = v₀² + 2aΔx
v² = (0 m/s)² + 2 (0.53 m/s²) (3 m)
v = 1.8 m/s
Employees execute tasks while entrepreneurs plan. An employee can take work day by day, whereas an entrepreneur has to consider how well the tasks are being performed relative to the long-term plan for the business.
In Newton's Third law of motion, the 'action' and 'reaction' forces act on different objects. That's why they don't cancel each other out and always result in zero force.
This law states that, despite chemical reactions or physical transformations, mass is conserved — that is, it cannot be created or destroyed — within an isolated system
Answer:

is time required to heat to boiling point form initial temperature.
Explanation:
Given:
initial temperature of water, 
time taken to vapourize half a liter of water, 
desity of water, 
So, the givne mass of water, 
enthalpy of vaporization of water, 
specific heat of water, 
Amount of heat required to raise the temperature of given water mass to 100°C:



Now the amount of heat required to vaporize 0.5 kg of water:

where:
mass of water vaporized due to boiling


Now the power rating of the boiler:



Now the time required to heat to boiling point form initial temperature:

