Answer:
A) s = 796.38 m
B) t = 12.742 s
C) T = 25.484 s
Explanation:
A) First of all let's find the time it takes to get to maximum height using Newton's first equation of motion.
v = u + gt
u = 125 m/s
v = 0 m/s
g = 9.81 m/s²
Thus;
0 = 125 - 9.81(t)
g is negative because motion is against gravity. Thus;
9.81t = 125
t = 125/9.81
t = 12.742 s
Max height will be gotten from Newton's 2nd equation of motion;
s = ut + ½gt²
s = (125 × 12.742) + (½ × -9.81 × 12.742²)
s = 1592.75 - 796.37
s = 796.38 m
B) time to reach maximum height is;
t = u/g
t = 125/9.81
t = 12.742 s
C) Total time elapsed is;
T = 2u/g
T = 2 × 125/9.81
T = 25.484 s
Answer:
Explanation:
From the given information:
The initial PE
= m×g×h
= 5 kg × 9.81 m/s² × 10 m
= 490.5 J
The change in Potential energy P.E of the box is:
ΔP.E = 
ΔP.E = 0 -
ΔP.E = 
If we take a look at conservation of total energy for determining the change in the internal energy of the box;


this can be re-written as:

Here, K.E = 0
Also, 70% goes into raising the internal energy for the box;
Thus,


ΔU = 343.35 J
Thus, the magnitude of the increase is = 343.35 J
For this case we have by definition:
v = λf
We observe that we have a linear relationship, where λ is the constant of proportionality.
We have then:
- <em>v: speed of propagation of the wave
</em>
- <em>λ: wavelength
</em>
- <em>f: frequency
</em>
Answer:
The variable that is directly proportional to the frequency is λ, the wavelength.
I had a teat and the answer was A
Amagat's law of additive volumes states that we can simply add up the individual volumes of each gas (provided they are at the same temperature and pressure) to get the total volume of the mixture. Conservation of volume is an acceptable assumption for gases (but not always for liquid mixtures). This works for gases since the molecules are very small and only take up a minimal amount of space in a gas.