By Newton's Law of Universal Gravitation.
F = GMm/r²
Where F is Force of Gravitation, M = Mass of first object, m = mass of second object, r = distance of separation
From the formula, you can see that if the masses, M and m, increased, the value of F would definitely increase as well.
And if r increased the value of F would be reduced because you would be dividing by a bigger number, but when the value of r is decreased the value of F would be increased, because you would then be dividing by something smaller. Note the r is at the denominator of the formula.
So F would increase if there was increase in Masses and decrease in distance.
So the answer is C. a and b.
Given:
• Mass, m = 0.200 mg
,
• Speed, v = 3.00 x 10³ m/s
,
• Time, t = 6.00 x 10^⁻⁸ s.
Let's calculate the force exerted.
Using the inpulse-momentum theroerm, we have:
impulse = change in momemntum
Where:
Impulse = force x time
change in momentum = mass x velocity.
Thus, we have:

Let's solve for the force F:

Therefore, the force exterted is 10000 N.
ANSWER:'
10000 N
Answer:
Satellites don't fall from the sky because they are orbiting Earth. Even when satellites are thousands of miles away, Earth's gravity still tugs on them. Gravity--combined with the satellite's momentum from its launch into space--cause the satellite go into orbit above Earth, instead of falling back down to the ground.
I think it's 1.03412969 or 1.03