Answer:
See below
Explanation:
Net force acting on the plane after overcoming frictional forces is
2.7 x 10^6 - 6.8 x 10^4 - 8.5 x 10^5 = 1 782 000 N
Work = F x d
= 1 782 000 x 1400 m = 2.5 x 10^9 J or 2.5 x 10^6 kJ
The air pressure inside the balloon is: 0.1432 Pa
The formulas and procedures that we will use to solve this problem are:
Where:
- a = area of the sphere
- r = radius
- π = mathematical constant
- P = Pressure
- F = Force
- a = surface area
Information about the problem:
- r = 5.0 m
- F = 45 N
- 1 Pa = N/m²
- 1 N = kg * m/s²
- a=?
- P=?
Using the formula of the sphere area we get:
a = 4 * π * r²
a = 4 * 3.1416 * (5.0 m)²
a = 314.16 m²
Applying the pressure formula we get:
P = F/a
P = 45 N/314.16 m²
P = 0.1432 Pa
<h3>What is pressure?</h3>
It is a physical quantity that expresses the force applied on the area of a surface.
Learn more about pressure at: brainly.com/question/26269477
#SPJ4
<span>Answer:
1st, identify the givens and the unknown - this will give you parameter of what concept and formula are you going to use.
Given: m= 1200kg v initial = 95km/hr v final = 0
2nd, focus on the units - in most cases units speak for the concept
the unit of the unknown is kcal, thus its the unit of energy or work
so, W = ?
3rd, provide the appropriate formula - give formula or equation that the given and the unknown are present
since W = delta K.E =delta P.E
W= 0.5m( vf^2 - vi^2) ---> best formula
4th, Substitute the given to the formula
since 1 Joule = 1Nm 1N = 1kgms^-2 1cal = 4.19 J
we express first 95 km/hr to m/s
95km/hr x 1000m/1km x 1hr/3600sec = 26.39 m/sec
W= 0.5(1200kg)[(0^2- (26.39m/sec)^2]
W=600 kg(0 - 696.43m^2/s^2)
W=600kg(-696.43m^2/s^2)
W=417859.3Nm or 417859.3 J
W = 417859.3 J x 1 cal /4.19 J
W = 99,727.7 cal or 99.728 kcal</span>
Explanation:
Light is clearly affected by gravity, just think about a black hole, but light supposedly has no mass and gravity only affects objects with mass. On the other hand, if light does have mass then doesn't mass become infinitely larger the closer to the speed of light an object travels.