3.87 i think but if its not correct then let me know.
Answer:
The magnitude of the new electric field is <u>35820 N/C</u>.
Explanation:
Given:
Original magnitude of electric field (E₀) = 2388 N/C
Original voltage = 'V' (Assume)
Original separation between the plates = 'd' (Assume)
Now, new voltage is three times original voltage. So, 
New distance is 1/5 the original distance. So, 
Now, electric field between the parallel plates originally is given as:

Let us find the new electric field based on the above formula.

Now,
. So,

Therefore, the magnitude of the new electric field is 35820 N/C.
Answer:
The time taken for the paint ball to hit the ground is 
The distance of the landing point from the tower is
Explanation:
From the question we are told that
The height of the tower is 
The speed of the paintball in the horizontal direction is 
Generally from kinematic equation we have that

Here u is the initial velocity of the paintball in the vertical direction and the value is 0 m/s , this because the ball was fired horizontally
a is equivalent to 
t is the time taken for the paintball to hit the ground
So

=> 
Generally the distance of its landing position from the tower is

=> 
=>
Answer:
It is conserved
Explanation:
Converted to heat energy due to the friction caused by the box rubbing on the floor
Work,
in thermodynamics, is the amount of energy that is transferred from one system
to another system without transfer of entropy. It is equal to the external
pressure multiplied by the change in volume of the system. It is expressed as
follows:<span>
W = PdV
Integrating and assuming that P is not affected
by changes in V or it is constant, then we will have:
W = P (V2 - V1)
Substituting the given values:
P = 1.0 atm = 101325 Pa
(V2 - V1) = 0.50 L =
W = 101325 N/m^3 ( 0.50) (1/1000) m^3
W = 50.66 N-m or 50.66 J
<span>
So, in the expansion process about 50.66 J of work is being done.
</span></span><span><span>
</span></span>