Given what we know, we can confirm that in a voltaic cell, the anode loses electrons and is oxidized, meanwhile, the cathode is reduced by gaining electrons.
<h3 /><h3>What is a voltaic cell?</h3>
- It is described as an electrochemical cell.
- These cells use chemical reactions to produce electrical energy.
- During this reaction, an anode loses electrons, thus oxidizing.
- Meanwhile, the cathode gains electrons and is reduced.
Therefore, given the nature of the voltaic cell, we can confirm that during its reaction, the anode is oxidized by losing electrons while the cathode becomes reduced by gaining them.
To learn more about electrical energy visit:
brainly.com/question/863273?referrer=searchResults
Answer:
it's a trigonal bipyramidial
Explanation:
because NH3 have 3 hydrogen atoms
Answer:
0.3 mole
Explanation:
number of moles grams
one 14+(4×1)+14+(3×16)
1 80
? 24
Therefore, 24×1÷80 = 0.3 moles of ammonium nitrate
Answer:
The reaction rates cannot charge
Explanation:
Answer:
See explanation
Explanation:
According to the Bohr model of the atom, electrons are found in energy levels. Energy is absorbed or emitted when an electron moves from one energy level to another.
During flame test, electrons absorb energy and move to higher energy levels; they quickly return to ground state and emit the energy previously absorbed as a photon of light. This is seen as the colour imparted to the flame by the metal.
The emission spectrum tells us about the range of wavelengths emitted by an atom or compound when it is excited. At an atomic level, the electrons are moved to higher energy levels and as they return to ground state, they emit the various wavelengths that comprise the emission spectrum of any particular substance.