Just about anything you could ask about a projectile AFTER it's launched
depends on both components of the launch velocity.
Here are some that I can think of:
-- angle of launch
-- magnitude of launch velocity
-- location at any time after launch
-- magnitude of velocity at any time after launch
-- direction of velocity at any time after launch
-- distance of the landing point from the launch point
Answer:
Q = 590,940 J
Explanation:
Given:
Specific heat (c) = 1.75 J/(g⋅°C)
Mass(m) = 2.01 kg = 2,010
Change in temperature (ΔT) = 191 - 23 = 168°C
Find:
Heat required (Q)
Computation:
Q = mcΔT
Q = (2,010)(1.75)(168)
Q = 590,940 J
Q = 590.94 kJ
Heat, kinetic energy loss.
<h3><u>Answer;</u></h3>
Mid-ocean ridges
<h3><u>Explanation</u>;</h3>
- Sea-floor spreading is the process by which molten material adds new oceanic crust to the ocean floor.
- Mid-ocean ridge is an undersea mountain chain where new ocean floor is produced at a divergent plate boundary.
- Mid ocean ridge occurs when convection currents rise in the mantle beneath the oceanic crust and create magma where two tectonic plates meet at a divergent boundary.
Recall that to compute for the emf of a circuit given current and inductance, we must recall that

where I is the current (A), M is the mutual inductance (h), and t is the time (ms). Since the current must not exceed 80.0 V, we have



From this, we see that it must take at least 0.35 ms so it doesn't exceed 80 V.
Answer: 0.35 ms