Explanation:
Equilibrium position in y direction:
W = Fb (Weight of the block is equal to buoyant force)
m*g = V*p*g
V under water = A*h
hence,
m = A*h*p
Using Newton 2nd Law

Hence, T time period
T = 2*pi*sqrt ( h / g )
Answer:
(A) Work done will be 87.992 KJ
(B) Work done will be 167.4 KJ
Explanation:
We have given mass of methane m = 4.5 gram = 0.0045 kg
Volume occupies 
And volume is increased by
so 
Temperature T = 310 K
Pressure is given as 200 Torr = 26664.5 Pa
(a) At constant pressure work done is given by

(b) At reversible process work done is given by 
We have given mass = 4.5 gram
Molar mass of methane = 16
So number of moles 
So work done 
The easiest way I know to explain it is this:
-- Take a flashlight and a ball into a dark room.
-- Turn on the flashlight and point it at the ball.
-- Half of the ball is lighted up by the flashlight, and the other half is dark.
-- There is no way you can turn or twist the ball to make more or less
than 50% of it lighted up and more or less than 50% of it dark.
<em>Everything</em> in the solar system ... as long as it's shaped like a ball ... is
half illuminated by the sun and half dark.
The answer is D hope it helps
Answer:
<em>The direction of the magnetic field on point P, equidistant from both wires, and having equal magnitude of current flowing through them will be pointed perpendicularly away from the direction of the wires.</em>
Explanation:
Using the right hand grip, the direction of the magnet field on the wire M is counterclockwise, and the direction of the magnetic field on wire N is clockwise. Using this ideas, we can see that the magnetic flux of both field due to the currents of the same magnitude through both wires, acting on a particle P equidistant from both wires will act in a direction perpendicularly away from both wires.