Complete Question
The complete question is shown on the first uploaded image
Answer:
a

b
New 
Explanation:
From the question we are told that
The refractive index of the core is 
The refractive index of the cladding is 
Generally according to Snell's law

Where
is the largest angle a largest angle a ray will make with respect to the interface of the fiber and experience total internal reflection
![\theta_{max} = 90 - sin^{-1} [\frac{n_{cladding}}{n_{core}} ]](https://tex.z-dn.net/?f=%5Ctheta_%7Bmax%7D%20%3D%2090%20-%20sin%5E%7B-1%7D%20%5B%5Cfrac%7Bn_%7Bcladding%7D%7D%7Bn_%7Bcore%7D%7D%20%5D)
![\theta_{max} = 90 - sin^{-1} [\frac{1.421}{1.497}} ]](https://tex.z-dn.net/?f=%5Ctheta_%7Bmax%7D%20%3D%2090%20-%20sin%5E%7B-1%7D%20%5B%5Cfrac%7B1.421%7D%7B1.497%7D%7D%20%5D)

Given from the question the the largest angle is 5°
Generally the refraction index of the cladding is mathematically represented as


Answer:
The fountain is 3.43 m high.
Explanation:
Circumference of the pool = 15 m.
C = 2
r
where C is the circumference and r its radius.
r = 
= 
r = 2.3864
radius of the pool = 2.40 m
So that the height of the fountain, h, can be determined by applying trigonometric function.
Tan θ =
Tan 55 = 
h = Tan 55 x 2.4
= 1.4282 x 2.4
= 3.4277
h = 3.43 m
The height of the fountain is 3.43 m.
Answer:
According to Newton's first law of motion, an object maintains its state unless a force acts on it. Therefore, a moving car does not change its direction and keeps its speed unless a force acts on it.
Metallic bonding accounts<span> for many physical </span>properties of metals, such as strength, ductility, thermal and electrical resistivity and conductivity, opacity, and luster. I hope my answer has come to your help. God bless and have a nice day ahead!
The right answer for the question that is being asked and shown above is that: "d. As the distance from the Earth increases, the sound wave intensity also decreases due to the lessening density." This the <span>statement that is untrue in regard to sound traveling in air</span>