We need to use Wien's Law
Wavelength = 0.0028976 [m.K] / T
This establishes a relation between the wavelength and temperature of a black body (any body that absorbs radiation, such as the stars)
T = 0.0028976 [m.K]/290 E-9[m] = 9991.724 K
Answer:
Explanation:
The point at which magnetic field is to be found lies outside wire so while applying Ampere's law we shall take the whole of current . If B be magnetic field which is circular around conductor.
Applying Ampere's law :-
∫ B dl = μ₀ I ; I is current passing through ampere's loop
B x 2π x 2.00 = 4 x π x 10⁻⁷ x 2
B = 2 x 10⁻⁷ T.
Answer:
C. At a particular instant
Explanation:
Speed is the defined as the ratio between the distance covered by an object and the time taken:

where d is the distance and t the time.
However, there are two possible measurements of speed:
- Average speed: this is the speed measured over a non-zero time interval (for example: a car moving 100 metres in 5 seconds; its average speed is

- Instantaneous speed: this is the speed of an object measured at a particular instant in time, so for a time interval that tends to zero. So, in the previous example, the average speed is 20 m/s but the instantaneous speed of the car at various instants of time can be different from that value.
I can guarantee you that it is not
C.<span>the angle that the incident ray makes with a line drawn perpendicular to the reflecting surface I hope this somewhat helps</span>