Answer:
1. G.P.E = 24 J
2. center of mass
Explanation:
Given the following data;
Mass = 2kg
Height, h = 1.2m
Acceleration due to gravity = 9.8 N/kg or m/s².
To find the gravitational potential energy;
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;

Where;
- G.P.E represents potential energy measured in Joules.
- m represents the mass of an object.
- g represents acceleration due to gravity measured in meters per seconds square.
- h represents the height measured in meters.
Substituting into the formula, we have;

G.P.E = 23.52 to 2 S.F = 24 Joules.
Translation kinetic energy is defined as the energy of a system due to the motion of the system’s center of mass. The center of mass is typically where the mass of the object or particle is concentrated.
Answer:
The magnetic force will be 0.256 N in +y direction.
Explanation:
It is given that, a wire along the z axis carries a current of 6.4 A in the z direction. Length of the wire is 8 cm. It is placed in uniform magnetic field with magnitude 0.50 T in the x direction.
The magnetic force in terms of length of wire is given by :

For direction,

So, the magnetic force will be 0.256 N in +y direction.
Answer:
nothing
Explanation:If you ride a bike around the block and return to the exact point where you started, your displacement is zero.
By definition, displacement involves changing an object from its original position. No matter how far or for how long a body moves, if it returns to the position it started from, it has not been displaced at all. This means that the body has zero displacements.
S(travel distance)=85 ft
v (velocity)=15 ft/s
-----------------------------------
t (time)=?
Calculate the time with the formula for the velocity:
v=S/t
t=S/v
t=85 ft/(15 ft/s)
t=5.666s
the answer is c: kilogram
explanation: The standard International System of Units (SI) unit of mass is the kilogram (kg). The kilogram is 1000 grams (g), first defined in 1795 as one cubic decimeter of water at the melting point of ice.