The part that moves are called anti-nodes. The stationary pars are nodes
The second law of thermodynamics establishes restrictions on the flow of thermal energy between two bodies. This law states that the energy does not flow spontaneously from a low temperature object T1, to another object that is at a high temperature T2.
For example. Suppose you place your cell phone on the table. Your phone is at a temperature of 40 ° C and the table is at 19 ° C. Then, it is impossible for the table to spontaneously transfer its thermal energy to the telephone, and so that the table gets colder and the telephone warmer.
Finally we can say that the correct option is B: From the hotter object to the cooler object
Answer:
The value of the spring constant of this spring is 1000 N/m
Explanation:
Given;
equilibrium length of the spring, L = 10.0 cm
new length of the spring, L₀ = 14 cm
applied force on the spring, F = 40 N
extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm
From Hook's law
Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.
F ∝ e
F = ke
where;
k is the spring constant
k = F / e
k = 40 / 0.04
k = 1000 N/m
Therefore, the value of the spring constant of this spring is 1000 N/m
All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons. As you move down the table, every row adds an orbital.
In addition to acceleration of gravity we experience centrifugal acceleration away from the axis of rotation of the earth. this additional acceleration has value ac = r w^2 where w = angular velocity and r is distance from your spot on earth to the earth's axis of rotation so r = R cos(l) where l = 60 deg is the lattitude and R the earth's radius and w = 1 / (24hr x 3600sec/hr)
<span>now you look up R and calculate ac then you combine the centrifugal acc. vector ac with the gravitational acceleration vector ag = G Me/R^2 to get effective ag' = ag -</span>