The gravitational force between Mars and the Sun is 
Explanation:
The magnitude of the gravitational force between two objects is given by the equation:
where
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
In this problem, we have:
is the mass of the Sun
is the mass of Mars
is the average distance Mars-Sun
Substituting into the equation, we find the gravitational force:

So, the closest answer is

Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
a. speed, v = 0.97 c
b. time, t' = 20.56 years
Given:
t' = 5 years
distance of the planet from the earth, d = 10 light years = 10 c
Solution:
(a) Distance travelled in a round trip, d' = 2d = 20 c = L'
Now, using Length contraction formula of relativity theory:
(1)
time taken = 5 years
We know that :
time = 
5 =
(2)
Dividing eqn (1) by v on both the sides and substituting eqn (2) in eqn (1):
Squaring both the sides and Solving above eqution, we get:
v = 0.97 c
(b) Time observed from Earth:
Using time dilation:


Solving the above eqn:
t'' = 20.56 years
When practicing an oral presentation, you can prepare by writing a draft and practice reading aloud what you are going to say before your oral presentation.
Answer:
Explanation:
Its definitely an Attractive force since the two charges are Unlike.
From Coulombs Law
F=kq1q2/R²
Given
K=9x10^9
R=1m
q1=2C
q2=-1C
F=(9x10^9 x 2 x -1)/1²
F= - 1.8x10^10N. (Attractive).