Answer:
37.125 m
Explanation:
Using the equation of motion
s=ut+0.5at^{2} where s is distance, u is initial velocity, t is time and a is acceleration
<u>Distance during acceleration</u>
Acceleration, a=\frac {V_{final}-V_{initial}}{t} where V_{final} is final velocity and V_{initial} is initial velocity.
Substituting 0.0 m/s for initial velocity and 4.5 m/s for final velocity, acceleration will be
a=\frac {4.5 m/s-0 m/s}{4.5 s}=1 m/s^{2}
Then substituting u for 0 m/s, t for 4.5 s and a for 1 m/s^{2} into the equation of motion
s=0*4.5+ 0.5*1*4.5^{2}=0+10.125
=10.125 m
<u>Distance at a constant speed</u>
At a constant speed, there's no acceleration and since speed=distance/time then distance is speed*time
Distance=4.5 m/s*6 s=27 m
<u>Total distance</u>
Total=27+10.125=37.125 m
Answer:
The wavelength stays the same.
Explanation:
When the amplitude is increased, the wavelength stays the same.
Here the wavelength doesn't depend upon the amplitude.
The zone that gases always accelerate upward is the Luminous flame zone. The fire plume is the column of hot gases, flames and smoke rising above a fire. Gases accelerate upward toward the always luminous flame zone. The luminous flame height is the distance between the base of a flame and the point at which the plume is luminous half the time and transparent half the time.
wavelength = speed/frequency
==> freq. = speed/wavelength = 342.5/0.75 = 456.67 Hz.
Answer:
Hope this helps! Please Mark Brainliest!
Explanation:
The Nucleus: The Center of an Atom. The nucleus, that dense central core of the atom, contains both protons and neutrons. Electrons are outside the nucleus in energy levels.