Kinetic energy =1/2 mv^2
<span>m=2ke/v^2 </span>
<span>m=2(34)/3.6^2 </span>
<span>m=5.24 </span>
<span>force normal = mg </span>
<span>=5.24 x 9.8 </span>
<span>force normal = 51.4N
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
When sphere A and B are brought in contact and separated, charge on each sphere becomes [2x10^-6 + (-4x10^-6)]/ 2 = -1x10^-6 C.
That is, charge is equally separated and is the average of charges on both spheres. The reason behind equal charge on both spheres after separation is, when they are kept in contact, their potential difference becomes same.
A sphere is charged with electrons to −9 × 10−6 C. The value given is the total charge of all the electrons present in the sphere. To calculate the number of electrons in the sphere, we divide the the total charge with the charge of one electron.
N = 9 × 10−6 C / 1.6 × 10−19 C
N = 5.6 x 10^13
Answer:
(a) 0.3778 eV
(b) Ratio = 0.0278
Explanation:
The Bohr's formula for the calculation of the energy of the electron in nth orbit is:
(a) The energy of the electron in n= 6 excited state is:
Ionisation energy is the amount of this energy required to remove the electron. Thus, |E| = 0.3778 eV
(b) For first orbit energy is:
Ratio = 0.0278