1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
13

A vector AP is rotated about the Z-axis by 60 degrees and is subsequently rotated about X-axis by 30 degrees. Give the rotation

matrix that accomplishes these rotations in the given order.
Engineering
1 answer:
Musya8 [376]3 years ago
4 0

Answer:

R = \left[\begin{array}{ccc}1&0&0\\0&cos30&-sin30\\0&sin30&cos30\end{array}\right]\left[\begin{array}{ccc}cos 60&-sin60&0\\sin60&cos60&60\0&0&1\end{array}\right]

Explanation:

The mappings always involve a translation and a rotation of the matrix. Therefore, the rotation matrix will be given by:

Let \theta and \alpha be the the angles 60⁰ and 30⁰ respectively

that is \theta = 60⁰ and

\alpha = 30⁰

The matrix is given by the following expression:

\left[\begin{array}{ccc}1&0&0\\0&cos30&-sin30\\0&sin30&cos30\end{array}\right]\left[\begin{array}{ccc}cos 60&-sin60&0\\sin60&cos60&60\0&0&1\end{array}\right]

The angles can be evaluated and left in the surd form.

You might be interested in
La probabilidad de que un nuevo producto tenga éxito es de 0.85. Si se eligen 10 personas al azar y se les pregunta si compraría
liq [111]

Answer:

La probabilidad pedida es 0.820196

Explanation:

Sabemos que la probabilidad de que un nuevo producto tenga éxito es de 0.85. Sabemos también que se eligen 10 personas al azar y se les pregunta si comprarían el nuevo producto. Para responder a la pregunta, primero definiremos la siguiente variable aleatoria :

X: '' Número de personas que adquirirán el nuevo producto de 10 personas a las que se les preguntó ''

Ahora bien, si suponemos que la probabilidad de que el nuevo producto tenga éxito se mantiene constante (p=0.85) y además suponemos que hay independencia entre cada una de las personas al azar a las que se les preguntó ⇒ Podemos modelar a X como una variable aleatoria Binomial. Esto se escribe :

X ~ Bi(n,p) en donde ''n'' es el número de personas entrevistadas y ''p'' es la probabilidad de éxito (una persona adquiriendo el producto) en cada caso.

Utilizando los datos ⇒ X ~ Bi(10,0.85)

La función de probabilidad de la variable aleatoria binomial es :

p_{X}(x)=P(X=x)=\left(\begin{array}{c}n&x\end{array}\right)p^{x}(1-p)^{n-x}    con x=0,1,2,...,n

Si reemplazamos los datos de la pregunta en la función de probabilidad obtenemos :

P(X=x)=\left(\begin{array}{c}10&x\end{array}\right)(0.85)^{x}(0.15)^{10-x} con x=0,1,2,...,10

Nos piden la probabilidad de que por lo menos 8 personas adquieran el nuevo producto, esto es :

P(X\geq 8)=P(X=8)+P(X=9)+P(X=10)

Calculando P(X=8), P(X=9) y P(X=10) por separado y sumando, obtenemos que P(X\geq 8)=0.820196

7 0
3 years ago
Tensile Strength (MPa) Number-Average Molecular Weight (g/mol)
IceJOKER [234]

Answer:

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

\mathbf{M_n = 49163.56431  \ g/mol }

Explanation:

The question can be well structured in a table format as illustrated below:

Tensile Strength (MPa)            Number- Average Molecular Weight  (g/mol)

82                                                  12,700

156                                                 28,500

The tensile strength and number-average molecular weight for two polyethylene materials given above.

Estimate the number-average molecular weight that is required to give a tensile strength required above. Using the data given find TS (infinity) in MPa.

<u>SOLUTION:</u>

We know that :

T_S = T_{S \infty} - \dfrac{A}{M_n}

where;

T_S = Tensile Strength

T_{S \infty} = Tensile Strength (Infinity)

M_n = Number- Average Molecular Weight  (g/mol)

SO;

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

From equation (1) ; collecting the like terms; we have :

T_{S \infty} =82+ \dfrac{A}{12700}

From equation (2) ; we have:

T_{S \infty} =156+ \dfrac{A}{28500}

So; T_{S \infty} = T_{S \infty}

Then;

T_{S \infty} =82+ \dfrac{A}{12700} =156+ \dfrac{A}{28500}

Solving by L.C.M

\dfrac{82(12700) + A}{12700} =\dfrac{156(28500) + A}{28500}

\dfrac{1041400 + A}{12700} =\dfrac{4446000 + A}{28500}

By cross multiplying ; we have:

({4446000 + A})*  {12700} ={28500} *({1041400 + A})

(5.64642*10^{10} + 12700A) =(2.96799*10^{10}+ 28500A)

Collecting like terms ; we have

(5.64642*10^{10} - 2.96799*10^{10} ) =( 28500A- 12700A)

2.67843*10^{10}  = 15800 \ A

Dividing both sides by 15800:

\dfrac{ 2.67843*10^{10} }{15800} =\dfrac{15800 \ A}{15800}

A = 1695208.861

From equation (1);

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

Replacing A = 1695208.861 in the above equation; we have:

82= T_{S \infty} - \dfrac{1695208.861}{12700}

T_{S \infty}= 82 + \dfrac{1695208.861}{12700}

T_{S \infty}= \dfrac{82(12700) +1695208.861 }{12700}

T_{S \infty}= \dfrac{1041400 +1695208.861 }{12700}

T_{S \infty}= \dfrac{2736608.861 }{12700}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

From equation(2);

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

Replacing A = 1695208.861 in the above equation; we have:

156= T_{S \infty} - \dfrac{1695208.861}{28500}

T_{S \infty}= 156 + \dfrac{1695208.861}{28500}

T_{S \infty}= \dfrac{156(28500) +1695208.861 }{28500}

T_{S \infty}= \dfrac{4446000 +1695208.861 }{28500}

T_{S \infty}= \dfrac{6141208.861}{28500}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

We are to also estimate the number- average molecular weight that is required to give a tensile strength required above.

If the Tensile Strength (MPa) is 82 MPa

Definitely the average molecular weight will be = 12,700 g/mol

If the Tensile Strength (MPa) is 156 MPa

Definitely the average molecular weight will be = 28,500 g/mol

But;

Let us assume that the Tensile Strength (MPa) = 181 MPa for example.

Using the same formula:

T_S = T_{S \infty} - \dfrac{A}{M_n}

Then:

181 = 215.481- \dfrac{1695208.861 }{M_n}

Collecting like terms ; we have:

\dfrac{1695208.861 }{M_n} = 215.481-  181

\dfrac{1695208.861 }{M_n} =34.481

1695208.861= 34.481 M_n

Dividing both sides by 34.481; we have:

M_n = \dfrac{1695208.861}{34.481}

\mathbf{M_n = 49163.56431  \ g/mol }

5 0
3 years ago
For powder compaction using a single-action punch, derive an expression for the distribution of axial pressure within a die of r
Zielflug [23.3K]

Answer:

a) 2∪p/lb (l+b)dH

b) po exp( 4∪x/l)

Explanation:

please check the attachment for proper explanation and proper sign notations thanks.

3 0
3 years ago
A 50 mm diameter shaft is subjected to a static axial load of 160 kN. If the yield stress of the material is 350 MPa, the ultima
zvonat [6]

In order to develop this problem it is necessary to take into account the concepts related to fatigue and compression effort and Goodman equation, i.e, an equation that can be used to quantify the interaction of mean and alternating stresses on the fatigue life of a materia.

With the given data we can proceed to calculate the compression stress:

\sigma_c = \frac{P}{A}

\sigma_c = \frac{160*10^3}{\pi/4*0.05^2}

\sigma_c = 81.5MPa

Through Goodman's equations the combined effort by fatigue and compression is expressed as:

\frac{\sigma_a}{S_e}+\frac{\sigma_c}{\sigma_u}=\frac{1}{Fs}

Where,

\sigma_a=Fatigue limit for comined alternating and mean stress

S_e =Fatigue Limit

\sigma_c=Mean stress (due to static load)

\sigma_u = Ultimate tensile stress

Fs =Security Factor

We can replace the values and assume a security factor of 1, then

\frac{\sigma_a}{320}+\frac{81.5}{400}=\frac{1}{1}

Re-arrenge for \sigma_a

\sigma_a = 254.8Mpa

We know that the stress is representing as,

\sigma_a = \frac{M_c}{I}

Then,

Where M_c=Max Moment

I= Intertia

The inertia for this object is

I=\frac{\pi d^4}{64}

Then replacing and re-arrenge for M_c

M_c = \frac{\sigma_a*\pi*d^3}{32}

M_c = \frac{260.9*10^6*\pi*0.05^3}{32}

M_c = 3201.7N.m

Thereforethe moment that can be applied to this shaft so that fatigue does not occur is 3.2kNm

5 0
4 years ago
You are preparing to exit from an expressway. You should begin slowing to the posted safe
wlad13 [49]

Answer:

Your answer will be B: At least 100 feet after leaving the expressway

8 0
3 years ago
Read 2 more answers
Other questions:
  • An array of electronic chips is mounted within a sealedrectangular enclosure, and colling is implemented by attaching analuminum
    5·1 answer
  • A heat pump designer claims to have an air-source heat pump whose coefficient of performance is 1.8 when heating a building whos
    10·1 answer
  • Discuss the impact of the changing urban center. Include the impacts on political, economic, and social roles and opportunities.
    12·1 answer
  • Only an outer panel is being replaced. Technician A says that removing the spot welds by drilling through both panels allows the
    11·1 answer
  • What is the major drawback to use whiskers as a dispersed agents in composites? a)- High price b)- Large length to diameter rati
    7·1 answer
  • What is a business cycle? a period of economic growth followed by economic contraction the amount of time it takes a business to
    13·2 answers
  • Determine the wattmeter reading when it is connected to resistor load.​
    11·1 answer
  • Which fields of engineering use fluid power? Explain how these fields make use of fluid power systems: water supply, agricultura
    10·1 answer
  • There are two methods to create simple robots. First, you can construct them by purchasing various individual components and ass
    15·1 answer
  • What is another term for the notes that a reader can add to text in a word-processing document?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!