1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
3 years ago
7

What is the major drawback to use whiskers as a dispersed agents in composites? a)- High price b)- Large length to diameter rati

os c)- Difficult to disperse d)- a & c
Engineering
1 answer:
artcher [175]3 years ago
7 0

Answer: C) a&c

Explanation: Composite materials are the materials which are made up of the two or more material of different properties.They are usually having properties like high hardness,low in density,no dissolving into each other etc. Whiskers as a dispersing agent in composite materials are usually not preferred because they are expensive as well as they are not easy to disperse in the composite material.Thus option (c) is the correct answer.

You might be interested in
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occ
shusha [124]

Answer:

A)W'/m = 311 KJ/kg

B)σ'_gen/m = 0.9113 KJ/kg.k

Explanation:

a).The energy rate balance equation in the control volume is given by the formula;

Q' - W' + m(h1 - h2) = 0

Dividing through by m, we have;

(Q'/m) - (W'/m) + (h1 - h2) = 0

Rearranging, we have;

W'/m = (Q'/m) + (h1 - h2)

Normally, this transforms to another equation;

W'/m = (Q'/m) + c_p(T1 - T2)

Where;

W'/m is the rate at which power is developed

Q'/m is the rate at which heat is flowing

c_p is specific heat at constant pressure which from tables at a temperature of 980k = 1.1 KJ/kg.k

T1 is initial temperature

T2 is exit temperature

We are given;

Q'/m = -30 kj/kg (negative because it leaves the turbine)

T1 = 980 k

T2 = 670 k

Plugging in the relevant values;

W'/m = -30 + 1.1(980 - 670)

W'/m = 311 KJ/kg

B) The Entropy produced from the entropy balance equation in a control volume is given by the formula;

(Q'/T_boundary) + m(s1 - s2) + σ'_gen = 0

Dividing through by m gives;

((Q'/m)/T_boundary) + (s1 - s2) + σ'_gen/m = 0

Rearranging, we have;

σ'_gen/m = -((Q'/m)/T_boundary) + (s2 - s1)

Under the conditions given in the question, this transforms normally to;

σ'_gen/m = -((Q'/m)/T_boundary) - c_p•In(T2/T1) - R•In(p2/p1)

σ'_gen/m is the rate of entropy production in kj/kg

We are given;

p2 = 100 kpa

p1 = 400 kpa

T_boundary = 315 K

For an ideal gas, R = 0.287 KJ/kg.K

Plugging in the relevant values including the ones initially written in answer a above, we have;

σ'_gen/m = -(-30/315) - 1.1(In(670/980)) - 0.287(In(100/400))

σ'_gen/m = 0.0952 + 0.4183 + 0.3979

σ'_gen/m = 0.9113 KJ/kg.k

6 0
2 years ago
Your boss needs to recommend either the in-situ soil or the borrow material. Although you do not have much background on soil be
Andrej [43]

Answer: see attached file for the answer

7 0
3 years ago
Find the number of Btu conducted through a wall in 8 hours. The wall is 8 feet high by 24 feet long and has a total R-value of 1
dedylja [7]

Answer:

ΔQ = 4930.37 BTu

Explanation:

given data

height h = 8ft

Δt = 8  hours

length L = 24 feet

R value = 16.2 hr⋅°F⋅ft² /Btu

inside temperature t1 = 68°F

outside temperature t2 = 16°F

to find out

number of Btu conducted

solution

we get here number of Btu conducted by this expression that s

\frac{\Delta Q}{\Delta t} =\frac{-A}{R} (t2 -t1)     ......................1

here A is area that is = h × L = 8 × 24 = 1492 ft²

put here value we get

\frac{\Delta Q}{8} =\frac{-192}{16.2} (16-68)

solve it we get

ΔQ = 4930.37 BTu

7 0
3 years ago
The universe is sometimes described as an isolated system. Why?
Romashka [77]

Answer and Explanation :The universe means it includes everything, even the things which we can not see is an isolated system because universe has no surroundings. an isolated system does not exchange energy or matter with its surroundings.Sometime universe is treated as isolated system because it obtains lots of energy from the sun but the exchange of matter or energy with outside is almost zero.

  • the total energy of an isolated system is always constant means total energy of universe is also constant
  • there is no exchange of matter or energy in an isolated system
8 0
3 years ago
Consider the diffusion of water vapor through a polypropylene (PP) sheet 1 mm thick. The pressures of H2O at the two faces are 3
Neko [114]

Answer:

\boxed{0.000000266 \frac {cm^{3}.STP}{cm^{2}.s}}

Explanation:

Diffusion flux of a gas, J is given by

J=P_m\frac {\triangle P}{\triangle x} where P_m is permeability coefficient, \triangle P is pressure difference and x is thickness of membrane.

The pressure difference will be 10,000 Pa- 3000 Pa= 7000 Pa

At 298 K, the permeability coefficient of water vapour through polypropylene sheet is 38\times 10^{-13}(cm^{3}. STP)(cm)/(cm^{2}.s.Pa)

Since the thickness of sheet is given as 1mm= 0.1 cm then

J=38\times 10^{-13}(cm^{3}. STP)(cm)/(cm^{2}.s.Pa)\times \frac {7000 pa}{0.1cm}=0.000000266 \frac {cm^{3}.STP}{cm^{2}.s}

Therefore, the diffusion flux is \boxed{0.000000266 \frac {cm^{3}.STP}{cm^{2}.s}}

7 0
2 years ago
Other questions:
  • With 64 KB of memory and 8 bits in each memory location, how wide should the address bus be to access all 64 KB of memory? (k =
    11·1 answer
  • What is the name of the model/shape below?
    5·2 answers
  • Select the correct answer.
    7·1 answer
  • I don't understand this I am really bad at measurements
    12·2 answers
  • A steel bar 100 mm long and having a square cross section 20 mm x 20 mm is pulled in
    6·1 answer
  • The Danish scientist Niels Bohr proposed a model of the atom that is not totally accurate today but still contains components th
    12·1 answer
  • Calculate the density of the FCC nickel lattice with an interstitial hydrogen in the centered position of the unit cell. You may
    10·1 answer
  • 6. Question
    13·1 answer
  • What are the advantages to a quality<br> saw?
    6·1 answer
  • A) Consider an air standard otto cycle that has a heat addition of 2800 kJ/kg of air, a compression ratio of 8 and a pressure an
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!