Answer:
K.E = 0.0075 J
Explanation:
Given data:
Mass of the ball = 1.5 kg
radius, r = 50 cm = 0.5 m
Angular speed, ω = 12 rev/min = (12/60) rev/sec = 0.2 rev/sec
Now,
the kinetic energy is given as:
K.E = 
where,
I is the moment of inertia = mr²
on substituting the values, we get

or
K.E = 0.0075 J
did you tried first if you did I can help
Answer:
With more particles there will be more collisions and so a greater pressure. The number of particles is proportional to pressure, if the volume of the container and the temperature remain constant. ... This happens when the temperature is increased.
Explanation:
Answer: The work done in J is 324
Explanation:
To calculate the amount of work done for an isothermal process is given by the equation:

W = amount of work done = ?
P = pressure = 732 torr = 0.96 atm (760torr =1atm)
= initial volume = 5.68 L
= final volume = 2.35 L
Putting values in above equation, we get:

To convert this into joules, we use the conversion factor:

So, 
The positive sign indicates the work is done on the system
Hence, the work done for the given process is 324 J
The x- and y-coordinates are 9142.57 m and -304.425 m
<u>Explanation:</u>
As the motion of the shell is in a plane (two dimensional space) and the acceleration is that due to gravity which is vertically downward, we resolve initial velocity of the shell
in horizontal and vertical directions. If the initial velocity of the shell is making angle with the horizontal, the horizontal component of initial velocity will be

As the acceleration of the shell is vertical having no horizontal component, the shell may be considered to move horizontally with constant velocity of
and hence the horizontal distance covered (or the x coordinate of the shell with point of projection as origin) is given by


For motion with constant acceleration, we know

Along the horizontal, x-axis, we might write this as

Measuring distances relative to the firing point means

we know that,

or,

By applying the values, we get,

The acceleration of gravity is vertically downward and is
, hence the vertical distance covered (or y coordinate of the shell) is given by the second equation of motion

we know,
and
, so,

y = 11701.8 - 4.9(2450.25)= 11701.8 - 12006.225 = - 304.425 m