W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
The speed of sound at T=25°C is Vs=346 m/s. So the sound has to reach the cliff and return back to you so the path it needs to travel is s=2*440 m = 880 m.
Since the speed of sound is constant s=Vs*t, and t= s/Vs=880/346=2.54335 s. You will hear the echo after t=2.54335 s after you shouted.
(a) Period of the wave
The period of a wave is the time needed for a complete cycle of the wave to pass through a certain point.
So, if an entire cycle of the wave passes through the given location in 5.0 seconds, this means that the period is equal to 5.0 s: T=5.0 s.
(b) Frequency of the wave
The frequency of a wave is defined as

since in our problem the period is

, the frequency is

(c) Speed of the wave
The speed of a wave is given by the following relationship between frequency f and wavelength

:
Answer:

Explanation:
Acceleration is defined as the change in velocity divided by the time it took to produce such change. The formula then reads:

Where Vf is the final velocity of the object, (in our case 80 m/s)
Vi is the initial velocity of the object (in our case 0 m/s because the object was at rest)
and t is the time it took to change from the Vi to the Vf (in our case 0.05 seconds.
Therefore we have:

Notice that the units of acceleration in the SI system are
(meters divided square seconds)
Answer: 2561.7 pounds
Explanation:
If we assume the total weight of an airplane (in pounds units) as a <u>linear function</u> of the amount of fuel in its tank (in gallons) and we make a Weight vs amount of fuel graph, which resulting slope is 5.7, we can use the slope equation of the line:
(1)
Where:
is the slope of the line
is the airplane weight with 51 gallons of fuel in its tank (assuming we chose the Y axis for the airplane weight in the graph)
is the fuel in airplane's tank for a total weigth of 2390.7 pounds (assuming we chose the X axis for the a,ount of fuel in the tank in the graph)
This means we already have one point of the graph, which coordinate is:

Rewritting (1):
(2)
As Y is a function of X:
(3)
Substituting the known values:
(4)
(5)
(6)
Now, evaluating this function when X=81 (talking about the 81 gallons of fuel in the tank):
(7)
(8) This means the weight of the plane when it has 81 gallons of fuel in its tank is 2561.7 pounds.