Answer:
ΔP = 14.5 Ns
I = 14.5 Ns
ΔF = 5.8 x 10³ N = 5.8 KN
Explanation:
The mass of the ball is given as 0.145 kg in the complete question. So, the change in momentum will be:
ΔP = mv₂ - mv₁
ΔP = m(v₂ - v₁)
where,
ΔP = Change in Momentum = ?
m = mass of ball = 0.145 kg
v₂ = velocity of batted ball = 55.5 m/s
v₁ = velocity of pitched ball = - 44.5 m/s (due to opposite direction)
Therefore,
ΔP = (0.145 kg)(55.5 m/s + 44.5 m/s)
<u>ΔP = 14.5 Ns</u>
The impulse applied to a body is equal to the change in its momentum. Therefore,
Impulse = I = ΔP
<u>I = 14.5 Ns</u>
the average force can be found as:
I = ΔF*t
ΔF = I/t
where,
ΔF = Average Force = ?
t = time of contact = 2.5 ms = 2.5 x 10⁻³ s
Therefore,
ΔF = 14.5 N.s/(2.5 x 10⁻³ s)
<u>ΔF = 5.8 x 10³ N = 5.8 KN</u>
Answer:
Force is 432.94 N along the rebound direction of ball.
Explanation:
Force is rate of change of momentum.

Final momentum = 0.38 x -1.70 = -0.646 kgm/s
Initial momentum = 0.38 x 2.20 = 0.836 kgm/s
Change in momentum = -0.646 - 0.836 = -1.472 kgm/s
Time = 3.40 x 10⁻³ s

Force is 432.94 N along the rebound direction of ball.
Hello.
The gaseous state is the more compressible state, because it has the volume of its container.
The liquid state is virtually incompressible, and the solid state compression is very small.
The plasma is another state that has high compression, but in this case the matter is not bound(we don't have the proton in the core of the atom)