1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
3 years ago
14

What is the distance between the zoo and the library?

Mathematics
1 answer:
KATRIN_1 [288]3 years ago
3 0
The answer is as follow

sin60° = 400√3 / H1, implies H1=  400√3 / sin60° <span>
sin30° = </span>400√3 / H2, implies H2=  400√3 / sin30° <span>
and the if the distance is D,
so we can find D such that D= H2 - H1=</span>400√3 / sin30° - 400√3 / <span>sin60°
D= </span>400√3(1/sin30°  - 1/ sin60°)=400√3(2-1.15)=338.11<span>√3</span>
You might be interested in
I you were flipping a nickel a dime and a quarter how many possible outcomes are possible for getting heads or tails
zhuklara [117]
3/6 possible out comes for heads and tails
8 0
4 years ago
Write an explicit formula for the recursive formula <br><br> A(n) = A(n - 1) + 3; A(1) = 6
arsen [322]

Answer:

a_{n} = 3n + 3

Step-by-step explanation:

The sequence is arithmetic with explicit formula

a_{n} = a₁ + (n - 1)d

where a₁ is the first term and d the common difference

From the recursive formula

a₁ = 6 and d = 3 [ the constant being added to A(n - 1) ] , then

a_{n} = 6 + 3(n - 1) = 6 + 3n - 3 = 3n + 3

7 0
3 years ago
What plus 150 equals to 180
zzz [600]

Answer:

30

Step-by-step explanation:

150+30=180

Hope This Helps!!

(brainliest please, if possible)

5 0
3 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
The perimeter of an isosceles triangle is 110 m two of the links are 40 and 30 m what is the area of the triangle
sp2606 [1]
You have to use the formula to find the area of the triangle Remember,the area equation is b times h to the b divided by 2.Doing this will get you 600 m.
8 0
3 years ago
Other questions:
  • What I said the answer to (4x-25)
    8·2 answers
  • Lacoste Middle School surveyed its student population about their favorite mobile
    6·2 answers
  • the midpoint of ab has coordinates of (5,-1) if the coordinate of a are (2,-3) what are the coordinates of b
    15·1 answer
  • Simplify 76 ⋅ 75. (4 points) 4911 4935 711 735
    5·2 answers
  • I need help please..<br>what is the value of x?​
    5·1 answer
  • A group of 180 students is divided into 20 teams for a competition. Write a unit rate that represents the number of students on
    5·2 answers
  • An athlete runs 8 miles in 50 minutes on a treadmill. At this rate how far can the athlete run in 1 hour
    8·2 answers
  • What’s the units?? Plz need help
    13·1 answer
  • Pleaaaseee helpppppp
    13·1 answer
  • An item is regularly priced at 25. It is on sale for 80% off the regular price. What is the sale price?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!