Answer:
2543 k
Explanation:
This problem can be resolved by applying the first law of thermodynamics
<u>Determine the adiabatic flame temperature</u> when the furnace is operating at a mass air-fuel ratio of 16 for air preheated to 600 K
attached below is a detailed solution
cp = 1200
STP stands for standard temperature pressure and NTP stands for normal temperature pressure
Answer:
The provided length of the vertical curve is satisfactory for the reconstruction design speed of 60 mi/h
Explanation:
The explanation is shown on the first uploaded image
Answer:
(a) dynamic viscosity = 
(b) kinematic viscosity = 
Explanation:
We have given temperature T = 288.15 K
Density 
According to Sutherland's Formula dynamic viscosity is given by
, here
μ = dynamic viscosity in (Pa·s) at input temperature T,
= reference viscosity in(Pa·s) at reference temperature T0,
T = input temperature in kelvin,
= reference temperature in kelvin,
C = Sutherland's constant for the gaseous material in question here C =120

= 291.15
when T = 288.15 K
For kinematic viscosity :


Answer:
Jet engines move the airplane forward with a great force that is produced by a tremendous thrust and causes the plane to fly very fast. All jet engines, which are also called gas turbines, work on the same principle. The engine sucks air in at the front with a fan. ... Spinning the turbine causes the compressor to spin.
Explanation:
yw