1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadya [2.5K]
3 years ago
9

Unit for trigonometric functions is always "radian". 1. 10 points: Do NOT submit your MATLAB code for this problem (a) Given f(x

)=('-sinx-0.2, find the solutions of f(x)=0 within the interval of 0
Engineering
1 answer:
RoseWind [281]3 years ago
7 0

Answer:

Below is the required code.

Explanation:

%% Newton Raphson Method

clear all;

clc;

x0=input('Initial guess:\n');

x=x0;

f=exp(-x)-sin(x)-0.2;

g=-exp(-x)-cos(x);

ep=10;

i=0;

cc=input('Condition of convergence:\n');

while ep>=cc

i=i+1;

temp=x;

x=x-(f/g);

f=exp(-x)-sin(x)-0.2;

g=-exp(-x)-cos(x);

ep=abs(x-temp);

fprintf('x = %6f and error = %6f at iteration = %2f \n',x,ep,i);

end

fprintf('The solution x = %6f \n',x);

%% End of MATLAB Program

Command Window:

(a) First Root:

Initial guess:

1.5

Condition of convergence:

0.01

x = -1.815662 and error = 3.315662 at iteration = 1.000000

x = -0.644115 and error = 1.171547 at iteration = 2.000000

x = 0.208270 and error = 0.852385 at iteration = 3.000000

x = 0.434602 and error = 0.226332 at iteration = 4.000000

x = 0.451631 and error = 0.017029 at iteration = 5.000000

x = 0.451732 and error = 0.000101 at iteration = 6.000000

The solution x = 0.451732

>>

Second Root:

Initial guess:

3.5

Condition of convergence:

0.01

x = 3.300299 and error = 0.199701 at iteration = 1.000000

x = 3.305650 and error = 0.005351 at iteration = 2.000000

The solution x = 3.305650

>>

(b) Guess x=0.5:

Initial guess:

0.5

Condition of convergence:

0.01

x = 0.450883 and error = 0.049117 at iteration = 1.000000

x = 0.451732 and error = 0.000849 at iteration = 2.000000

The solution x = 0.451732

>>

Guess x=1.75:

Initial guess:

1.75

Condition of convergence:

0.01

x = 227.641471 and error = 225.891471 at iteration = 1.000000

x = 218.000998 and error = 9.640473 at iteration = 2.000000

x = 215.771507 and error = 2.229491 at iteration = 3.000000

x = 217.692636 and error = 1.921130 at iteration = 4.000000

x = 216.703197 and error = 0.989439 at iteration = 5.000000

x = 216.970438 and error = 0.267241 at iteration = 6.000000

x = 216.971251 and error = 0.000813 at iteration = 7.000000

The solution x = 216.971251

>>

Guess x=3.0:

Initial guess:

3

Condition of convergence:

0.01

x = 3.309861 and error = 0.309861 at iteration = 1.000000

x = 3.305651 and error = 0.004210 at iteration = 2.000000

The solution x = 3.305651

>>

Guess x=4.7:

Initial guess:

4.7

Condition of convergence:

0.01

x = -1.916100 and error = 1.051861 at iteration = 240.000000

x = -0.748896 and error = 1.167204 at iteration = 241.000000

x = 0.162730 and error = 0.911626 at iteration = 242.000000

x = 0.428332 and error = 0.265602 at iteration = 243.000000

x = 0.451545 and error = 0.023212 at iteration = 244.000000

x = 0.451732 and error = 0.000187 at iteration = 245.000000

The solution x = 0.451732

>>

Explanation:

The two solutions are x =0.451732 and 3.305651 within the range 0 < x< 5.

The initial guess x = 1.75 fails to determine the solution as it's not in the range. So the solution turns to unstable with initial guess x = 1.75.

You might be interested in
Two gases—neon and air—are expanded from P1 to P2 in a closed-system polytropic process with n = 1.2. _____ produces more work w
Makovka662 [10]

Answer:

Note that Air requires lesser work

Explanation:

Calculate  for general work done

SInce Gas constant 'R' for:  Neon = 0.4119KJ/kg.k , and Air = 0.287 kJ/kg·K

Calculate for work done of NEON

Calculate for work done of Air

See solution attached.

7 0
3 years ago
If a signal is transmitted at a power of 250 mWatts (mW) and the noise in the channel is 10 uWatts (uW), if the signal BW is 20M
Bess [88]

Answer:

C = 292 Mbps

Explanation:

Given:

- Signal Transmitted Power P = 250mW

- The noise in channel N = 10 uW

- The signal bandwidth W = 20 MHz

Find:

what is the maximum capacity of the channel?

Solution:

-The capacity of the channel is given by Shannon's Formula:

                            C = W*log_2 ( 1 + P/N)

- Plug the values in:

                            C = (20*10^6)*log_2 ( 1 + 250*10^-3/10)

                            C = (20*10^6)*log_2 (25001)

                            C = (20*10^6)*14.6096

                           C = 292 Mbps

3 0
3 years ago
If the rotational speed of a pump motor is reduced by 35%, what is the effect on the pump performance in terms of capacity, head
FinnZ [79.3K]

Answer:

- the capacity of the pump reduces by 35%.

- the head gets reduced by 57%.

the power consumption by the pump is reduced by 72%

Explanation:

the pump capacity is related to the speed as speed is reduces by 35%

so new speed is (100 - 35) = 65% of orginal speed

speed Q ∝ N ⇒ Q1/Q2 = N1/N2

Q2 = (N2/N1)Q1    

Q2 = (65/100)Q1

which means that the capacity of the pump is also reduces by 35%.

the head in a pump is related by

H ∝ N² ⇒ H1/H2 = N1²/N2²

H2 = (N2N1)²H1

H2 = (65/100)²H1 = 0.4225H1

so the head gets reduced by 1 - 0.4225 = 0.5775 which is 57%.

Now The power requirement of a pump is related as

P ∝ N³ ⇒ P1/P2 = N1³/N2³

P2 = (N2/N1)³P1

H2 = (65/100)²P1 = 0.274P1

So the reduction in power is 1 - 0.274 = 0.725 which is 72%

Therefore for a reduction of 35% of speed there is a reduction of 72% of the power consumption by the pump.  

8 0
3 years ago
If the old radiator is replaced with a new one that has longer tubes made of the same material and same thickness as those in th
Nookie1986 [14]

Answer: hello some parts of your question is missing attached below is the missing information

The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through aluminum radiator tubes of thickness d that release heat to the outside air by conduction. The average temperature gradient between the coolant and the outside air is about 130 K/mm . The term ΔT/d  is called the temperature gradient which is the temperature difference ΔT between coolant inside and the air outside per unit thickness of tube

answer : Total surface area = 3/2 * area of old radiator

Explanation:

we will use this relation

K = \frac{Qd }{A* change in T }

change in T =  ΔT  

therefore New Area  ( A ) = 3/2 * area of old radiator

Given that the thermal conductivity is the same in the new and old radiators

3 0
3 years ago
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
2 years ago
Other questions:
  • A __ insulated panel consists of a layer of insulating foam between two osb or plywood panels
    14·2 answers
  • For a 68 wt% Zn-32 wt% Cu alloy, make schematic sketches of the microstructure that would be observed for conditions of very slo
    14·1 answer
  • A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as
    12·1 answer
  • Water drains at a constant rate through a saturated soil column with a diameter of 1.5 feet and a height of 3 feet. The hydrauli
    11·1 answer
  • 5 kg of a wet steam has a volume of 2 m3
    8·1 answer
  • (HVAC) PLEASE HELP neeed helpp
    15·1 answer
  • Draw the free-body diagram of the beam which supports the 80-kg load and is supported by the
    12·1 answer
  • Which of the following is most likely to require changes to existing zoning laws?
    13·1 answer
  • As you push a toggle bolt into a wall, the
    13·1 answer
  • 11. What are restrictions when building or completing a challenge?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!