Answer:
A. a rigorously tested explanation
Explanation:
- B. and D. are out - theories are not opinionated, they are factual
- C. is out - not all theories are mathematical
- A. is the best choice
Answer:
Explanation:
radius of gyration of wheel k then
k² = r²/2
r² = 2 k²
r = √2 k
= 1.414 x .3 m
r = .4242 m
Moment of inertia of wheel
= mass x radius of gyration ²
= 25 x .3 x .3
= 2.25 kg m²
Friction force acting on it ( sliding )
= μmg , μ being coefficient of kinetic friction
This friction force will create linear acceleration in forward direction
Acceleration produced
= μg
= .6 x 9.8
= 5.88 m / s ²
This will also rotate the wheel , angular acceleration being
linear acceleration / radius
= 5.88 /.4242
= 13.86 radian / s²
Answer:
600 KPa.
Explanation:
From the question given above, the following data were obtained:
Initial volume (V1) = 0.075 m³
Final volume (V2) = 0.45 m³
Final pressure (P2) = 100 KPa
Initial pressure (P1) =?
Temperature = constant
The initial pressure can be obtained by using the Boyle's law equation as shown below:
P1V1 = P2V2
P1 × 0.075 = 100 × 0.45
P1 × 0.075 = 45
Divide both side by 0.075
P1 = 45 / 0.075
P1 = 600 KPa.
Thus, the initial pressure in the balloon is 600 KPa.
An electromagnet is made from a coil of wire which acts as amagnet when an electric current passes through it. Often anelectromagnet is wrapped around a core of ferromagnetic material like steel, which enhances the magnetic field produced by the coil.
This is a very valid hypothesis for many reasons. One is that solar systems form from massive amounts of dust, ice, and debris that eventually form into planets and such. This means it is very possible for this 'excess material' if you will to have moved into orbit behind Neptune.