Answer:
No, the car is decelerating
Explanation:
No the car is decelerating if it exits a freeway and goes from 65
mph to 35 mph since the change in velocity is negative.
change in velocity = final - initial
change in velocity = 35 - 65
change in velocity = -30mph
Since the change in velocity is negative, hence the car is decelerating. Deceleration is a negative acceleration
Answer: 30m
Explanation:
Given:
Speed: 1.5m/s
Time: 20 seconds
Distance = speed × time
Distance = 1.5 × 20
= 30m
Therefore you will travel 30m
Must click thanks and mark brainliest
Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m
1.6764 meters. You can also google inches to meters for your answer.
Answer:
It can be concluded that the star is moving away from the observer.
Explanation:
Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving toward the observer, or to the red part of the spectrum when is moving away from the observer (that is known as the Doppler effect).
The wavelength at rest for this case is 434 nm and 410 nm (
,
)

Since,
(444nm) is greater than
(434 nm) and
(420nm) is greater than
(410 nm), it can be concluded that the star is moving away from the observer