Answer:
The combination of elements most likely to comprise the circuit are resistor, inductor and capacitor
Explanation:
The impedance of an LCR circuit shown as
Z = √R² + (X↓l - X↓c)²
Z = √R² + (2π∨L - 1/2π∨c)²
Variation of Z with respect to υ is shown in the figure.
As υ increases, Z decreases and so the current increases.
At υ = υ↓r
Z is minimum, current is maximum. Beyond
υ = υ↓r
Z increases and so current decreases.
so the combination of circuit elements that is most suitable to comprise
the circuit is R, L and C.
To learn more about these circuits
brainly.com/question/13140756
#SPJ4
Answer:
Amplitude = 0.058m
Frequency = 6.25Hz
Explanation:
Given
Amplitude (A) = 8.26 x 10-2 m
Frequency (f) = 4.42Hz
Conversation of energy before split
½mv² = ½KA²
Make A the subject of formula
A =
Conversation of energy after split
½(m/2)V'² = ½(m/2)V² = ½KA'²
½(m/2)V² = ½KA'²
Make A the subject of formula
First divide both sides by ½
(m/2)V² = KA'²
Divide both sides by K
V² = A'²
= A'
Substitute
for A in the above equation
A' = A/√2
A' = 8.26 x 10^-2/√2
A' = 0.05840702012600882
Amplitude after split = 0.058 (Approximated)
Frequency (f') = f√2
f' = 4.42√2
f' = 6.25082394568908011
Frequency after split = 6.25Hz (approximated)
5
Explanation:
hbmhbhjvjhvkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Answer:
Glucose and Oxygen
Explanation:
Cellular respiration is the process whereby cells derives energy by the use of glucose and oxygen.
Organisms that use cellular respiration to produce their energy are known as heterotophs. They derive the glucose from food materials obtained from plant sources. They use the oxygen from the environment to liberate energy from the glucose obtained from feeding on plant materials.
Cellular respiration can be simply expressed as shown below:
GLUCOSE + OXYGEN → CO₂ + H₂O + ATP
The reactants are glucose and oxygen.
The products are CO₂, water and ATP
The momentum of the second ball was 15 kg.m/s.
<h3>What is inelastic collision?</h3>
In which collision some amount of kinetic energy of the system is lost that called inelastic collision. In purely inelastic collision, two bodies stick together. But principle of conservation of linear momentum is obeyed.
In the given question,
Two balls collide and after collision, the final momentum of the system = 18 kg.m/s.
Initial velocity of 1st ball of mass 3 kg is 1 m/s.
So, Initial momentum of first ball = mass × velocity = (3 kg) × (1 m/s) = 3 kg.m/s.
According to Principle of conservation of linear momentum for this inelastic collision,
Initial momentum of first ball + initial momentum of second ball = final momentum of the system
⇒ initial momentum of second ball = final momentum of the system - Initial momentum of first ball
= 18 kg.m/s - 3 kg.m/s.
= 15 kg.m/s.
Hence, initial momentum of second ball = 15 kg.m/s.
Learn more about momentum here:
brainly.com/question/24030570
#SPJ2