1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pashok25 [27]
3 years ago
7

A car travels across Texas m miles at the rate of t miles per hour. How many hours does the trip take??

Physics
1 answer:
Marianna [84]3 years ago
8 0

Answer: The trip takes \frac{m}{t}hours

Explanation:

Velocity V is the variation of the position of a body (distance traveled d) with time T:

V=\frac{d}{T}

In this case, the car travels a distance d=m miles at a velocity V=t \frac{miles}{hour} and we need to find the time it takes the trip.

Isolating  T:

T=\frac{d}{V}=\frac{m miles}{t \frac{miles}{hour}}

Finally:

T=\frac{m}{t}hours

You might be interested in
What is the massof the largest ruby?
alexandr402 [8]
I think the answer is 2283g
4 0
3 years ago
Each driver has mass 79.0 kg. Including the masses of the drivers, the total masses of the vehicles are 800 kg for the car and 4
Mademuasel [1]

Answer:

Force exerted on the car driver by the seatbelt = 8139.4 N = 8.14 kN

Force exerted on the truck driver by the seatbelt = 1628.2 N = 1.63 kN

It is evident that the driver of the smaller vehicle has it worse. The car driver is in way more danger in this perfectly inelastic head-on collision with a bigger vehicle (the truck).

Explanation:

First of, we calculate the velocity of the vehicles after collision using the law of conservation of Momentum

Momentum before collision = Momentum after collision

Since the collision of the two vehicles was described as a head-on collision, for the sake of consistent convention, we will take the direction of the velocity of the bigger vehicle (the truck) as the positive direction and the direction of the car's velocity automatically is the negative direction.

Velocity of the truck before collision = 6.80 m/s

Velocity of the car before collision = -6.80 m/s

Let the velocity of the inelastic unit of vehicles after collision be v

Momentum before collision = (4000)(6.80) + (800)(-6.80) = 27200 - 5440 = 21,760 kgm/s

Momentum after collision = (4000 + 800)(v) = (4800v) kgm/s

Momentum before collision = Momentum after collision

21760 = 4800v

v = (21760/4800)

v = 4.533 m/s (in the direction of the big vehicle (the truck)

So, we then apply Newton's second law of motion which explains that the magnitude change in momentum is equal to the magnitude of impulse.

|Impulse| = |Change in momentum|

But Impulse = (Force exerted on each driver by the seatbelt) × (collision time) = (F×t)

Change in momentum = (Momentum after collision) - (Momentum before collision)

So, for the driver of the truck

Initial velocity = 6.80 m/s (the driver moves with the velocity of the truck)

Final velocity = 4.533 m/s

Change in momentum of the truck driver = (79)(6.80) - (79)(4.533) = 179.1 kgm/s

(F×t) = 179.1

F × 0.110 = 179.1

F = (179.1/0.11)

F = 1628.2 N = 1.63 kN

So, for the driver of the car

Initial velocity = -6.80 m/s (the driver moves with the velocity of the car)

Final velocity = 4.533 m/s

Change in momentum of the car driver = (79)(-6.80) - (79)(4.533) = -895.3 kgm/s

(F×t) = |-895.3|

F × 0.110 = 895.3

F = (895.3/0.11)

F = 8139.4 N = 8.14 kN

Hope this Helps!!!

3 0
3 years ago
What crop is least likely to do well when the temperatures are very hot?
torisob [31]

a. Sweet corn and possibly d. okra.

3 0
3 years ago
Factors that affect pressure in fluid​
satela [25.4K]

Answer:

The factors that affect are depth of the fluid and its density

5 0
3 years ago
A wad of clay of mass m1 = 0.49 kg with an initial horizontal velocity v1 = 1.89 m/s hits and adheres to the massless rigid bar
notka56 [123]

Answer:

<h2>The angular velocity just after collision is given as</h2><h2>\omega = 0.23 rad/s</h2><h2>At the time of collision the hinge point will exert net external force on it so linear momentum is not conserved</h2>

Explanation:

As per given figure we know that there is no external torque about hinge point on the system of given mass

So here we will have

L_i = L_f

now we can say

m_1v_1\frac{L}{2} = (m_2L^2 + m_1(\frac{L}{2})^2)\omega

so we will have

0.49(1.89)(0.45) = (2.13(0.90)^2 + 0.49(0.45)^2)\omega

\omega = 0.23 rad/s

Linear momentum of the system is not conserved because at the time of collision the hinge point will exert net external force on the system of mass

So we can use angular momentum conservation about the hinge point

6 0
3 years ago
Other questions:
  • When you push on an object such as a wrench, a steel pry bar, or even the outer edge of a door, you produce a torque equal to th
    10·1 answer
  • A person is standing on a scale placed on the floor of an elevator. At time t1, the elevator is at rest and the reading on the s
    11·2 answers
  • In the most common form of lightning, electric charges flow between the ground and a cloud. The flow changes dramatically over s
    12·1 answer
  • Jenny and Betty are having a great time at Busch Gardens riding the Ubanga Banga bumper cars. Jenny, who is traveling southward
    7·2 answers
  • Fan object moves in uniform circular motion in a circle of radius R=200 meters, and the objectes 5.00 seconds to
    12·1 answer
  • A string of length 4m is extended by 0.02m, when a load of 0.4kg is suspended at its end. What will be the length of the string,
    6·1 answer
  • What is Friction<br>short note on friction​
    7·1 answer
  • 11. A fundamental property of light is that it: 15
    9·1 answer
  • 10. On Christmas Eve night when all the Who's are sleeping, are they still using energy? Explain this by using
    5·1 answer
  • Help please
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!