Answer:
(a) False;
(b) False;
(c) False;
(d) True.
Explanation:
(a) When equilibrium is reached, the forward reaction rate becomes equal to the reverse reaction rate, that's why the molarity of each species remains constant, but reactions don't stop.
(b) According to the principle of Le Chatelier, an increase in molarity of either reactants or products would lead to a disturbance of equilibrium. This disturbance would lead to the shift of equilibrium towards the side which would minimize such a disturbance.
(c) Equilibrium constant is only temperature-dependent, it's independent of molarity, pressure, volume etc. of any species present in the reaction.
(d) The greater the initial molarity of reactants, the more products can be formed, e. g., since the ratio of products to reactants should be kept constant, the larger the amount of reactants, the greater the amount of products formed to keep a constant ratio.
Answer:
see calculations in explanation
Explanation:
percent = part/total x 100%
part = ∑ atomic mass of element
- hydrogen = 1.008 amu (atomic mass units)
- carbon = 12.011 amu
- nitrogen = 14.007 amu
total = ∑ molecular mass of compound
= H amu + C amu + Namu
= 1.008 amu + 12.011 amu + 14.007 amu
= 27.026 amu
%H = (1.008amu/27.026amu)100% = 3.730%
%C = (12.011amu/27.026amu)100% = 44.442%
%N = (14.007amu/27.026amu)100% = 51.827%
Check results ∑%values = 100%
3.730% + 44.442% + 51.827% = 99.999% ≅ 100%
<h3><u>Answer;</u></h3>
0.5 M HBr, pOH = 13.5 ; Has the lowest pH
<h3><u>Explanation;</u></h3>
From the question;
pH = -Log [OH]
or pH = 14 - pOH
Therefore;
For 0.5 M HBr
[H+] = 0.5 M
pH = - Log [0.5]
= 0.30
For; pOH = 13.5
pH = 14 - pOH
= 14 -13.5
= 0.5
For; 0.05 M HCl
pH = - log [H+]
[H+] = 0.05
pH = - Log [0.05]
= 1.30
For; pOH = 12.7
pH = 14 -pOH
= 14 -12.7
= 1.30
For; 0.005 M KOH,
pOH = - log [OH]
[OH-] = 0.005
pOH = - Log 0.005
= 2.30
pH = 14 - 2.30
= 11.7
For; pOH = 2.3
pH = 14 -pOH
= 14- 2.3
= 11.7
Answer:
A more dense plate going underneath a less dense plate.