A billiard ball moves with 3 kg⋅m/s of momentum and strikes three other billiard balls that have been just sitting there at rest and not moving.
The total momentum of all four balls after the collision is <em>3 kg⋅m/s</em>, because momentum is not created or destroyed. The total amount of it after an event is the same as the total amount of it before the event.
She can first measure the mass on the scale, then measure the cm^3 by putting water in the cylinder and measuring the original water level minus the water level after you put the rock in. The take the measurement from the scale (g) and divide it by the measurement in the graduated cylinder (c^3).
Answer:
The distance is 
Explanation:
From the question we are told that
The coefficient of static friction is 
The initial speed of the train is 
For the crate not to slide the friction force must be equal to the force acting on the train i.e

The negative sign shows that the two forces are acting in opposite direction
=> 
=> 
=> 
=> 
From equation of motion

Here v = 0 m/s since it came to a stop
=> 
=> 
=> 
The car will take 300 m before it stops due to applying break.
<h3>What's the relation between initial velocity, final velocity, acceleration and distance?</h3>
- As per Newton's equation of motion, V² - U² = 2aS
- V= final velocity velocity of the object, U = initial velocity velocity of the object, a= acceleration, S = distance covered by the object
- Here, U = 60 ft/sec, V = 0 m/s, a= -6 ft/sec²
- So, 0² - 60² = 2×6× S
=> -3600 = -12S
=> S = 3600/12 = 300 m
Thus, we can conclude that the distance covered by the car is 300 m before it stopped.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 6 ft/sec². How long will it take before the car stops?
Learn more about the Newton's equation of motion here:
brainly.com/question/8898885
#SPJ1
Answer:
Explanation:
A pressure that causes the Hg column to rise 1 millimeter is called a torr. The term 1 mmHg used can replaced by the torr.
1 atm = 760 torr = 14.7 psi.
A.
120 mmHg
Psi:
760 mmHg = 14.7 psi
120 mmHg = 14.7/760 * 120
= 2.32 psi
Pa:
1mmHg = 133.322 Pa
120 mmHg = 120 * 133.322
= 15998.4 Pa
B.
80 mmHg
Psi:
760 mmHg = 14.7 psi
80 mmHg = 14.7/760 * 80
= 1.55 psi
Pa:
1mmHg = 133.322 Pa
80 mmHg = 80 * 133.322
= 10665.6 Pa