Don’t currently have a calculator with me but just use Avogadros constant (A) 6.02x10^24, in the equation n=N/A. Lower case n being the number of mol and upper case being the number of molecules (given).
Answer:
Explanation:
Hello!
In this case, according to the ideal gas equation ratio for two states:
Whereas both n and R are cancelled out as they don't change, we obtain:
Thus, by solving for the final pressure, we obtain:
Now, since initial conditions are 1.00 atm, 273.15 K and 17 L and final temperature and volume are 94 + 273 = 367 K and 12 L respectively, the resulting pressure turns out to be:
Best regards!
According to Newton's third law, forces come in pairs. There is action-reaction force and an equal (in size - action force) and opposite in direction (reaction force).
<u>Explanation:</u>
On the off chance, when item A applies a force on item B, at that point item B must apply a force of equivalent size and inverse bearing back on object A. This Newton's third law speaks to a specific balance in nature: forces consistently happen two by two.
And, one body can't apply a force on another without encountering a force itself. Now and again, allude to this law freely as activity response, where the force applied is the activity and the force experienced as a result is the response.
Answer:
Explanation:
we know that specific heat is the amount of heat required to raise the temperature of substance by one degree mathmeticaly
Q=mcΔT
ΔT=T2-T1
ΔT=26.8-10.2=16.6
C for water is 4.184
therefore
Q=1.00*4.184*16.6
Q=69.4 j
now we have to covert joule into calorie
1 calorie =4.2 j
x calorie=69.4 j/2
so 69.4 j =34.7 calorie thats why 34.7 calorie heat is required to raise the temperature of water from 10.2 to 26.8 degree celsius
The sun gives off light energy to help plants photosynthesize and make food