<u>Answer:</u> The phase change process in which solids gets converted to gases is sublimation.
<u>Explanation:</u>
For the given options:
<u>Option a:</u> Condensation
It is a type of process in which phase change occurs from gaseous state to liquid state at constant temperature.

<u>Option b:</u> Melting
It is a type of process in which phase change occurs from solid state to liquid state at constant temperature.

<u>Option c:</u> Sublimation
It is a type of process in which phase change occurs from solid state to gaseous state without passing through the liquid state at constant temperature.

<u>Option d:</u> Deposition
It is a type of process in which phase change occurs from gaseous state to solid state without passing through the liquid state at constant temperature.

Hence, the phase change process in which solids gets converted to gases is sublimation.
Answer:
The empirical formula of the organic compound is = 
Explanation:
At STP, 1 mole of gas occupies 22.4 L of volume.
Moles of
gas at STP occupying 2.0 L = n


Moles of carbon in 0.08920 mol = 1 × 0.08920 mol = 0.08920 mol
Moles of
gas at STP occupying 3.0 L = n'


Moles of hydrogen in 0.1339 moles of water vapor = 2 × 0.1339 mol = 0.2678 mol
Moles of
gas at STP occupying 1.0 L = n''


Moles of sulfur in 0.04464 mol = 1 × 0.04464 mol = 0.04464 mol
Moles of carbon , hydrogen and sulfur constituent of that organic compound .
Moles of carbon in 0.08920 mol = 1 × 0.08920 mol = 0.08920 mol
Moles of hydrogen in 0.1339 moles of water vapor = 2 × 0.1339 mol = 0.2678 mol
Moles of sulfur in 0.04464 mol = 1 × 0.04464 mol = 0.04464 mol
For empirical; formula divide the least number of moles from all the moles of elements.
carbon = 
Hydrogen = 
Sulfur = 
The empirical formula of the organic compound is = 
Answer:
The correct answer is: d. The pKa of the chosen buffer should be close to the optimal pH for the biochemical reaction.
Explanation:
The buffer resist or maintain the change in pH in case of Acid or basic addition to the solution. The buffer capacity should be within one or two pH units when compared to the optimal pH.
Thus it is important to select a buffer with pKa close to the optimum pH of the reaction because the ability for the buffer to maintain the pH is is great at the pH close to pKa.
The reactions are in order which includes combustion reaction, Hydration reaction, oxidation reaction, and displacement reaction.
a) A combustion reaction is a chemical reaction between a fuel and an oxidant where heat is released. The combustion reaction example is given below. It is a balanced chemical reaction.
2C₃H₆(g) + 9O₂(g) --------> 6CO₂(g) + 6H₂O(g)
b. A hydration reaction is a chemical reaction in which a molecule of water is added to another molecule. Here Aluminum oxide is added to water to form aluminum hydroxide.
4Al₂O3(s) + 6H₂O(l)------> 2Al(OH)3(s)
c. When a metal reacts with oxygen, the metal forms an oxide. Oxide is a compound of metal and oxygen. Here lithium metal reacts with oxygen to form lithium oxide.
2Li(s) + O₂(g)-----> Li₂O(s)
d. A displacement reaction is one in which a more reactive element displaces a less reactive element from a compound. Here Zinc is more reactive than silver, so silver was displaced to form Zinc Nitrate.
Zn(s) + 2AgNO₃(aq) -----> 2Ag(s) + Zn(NO₃)₂(aq)
To know more about reactions, click below:
brainly.com/question/11231920
#SPJ1
<h3>
Answer:</h3>
2 L Ne
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
0.07 mol Ne (g)
<u>Step 2: Identify Conversions</u>
STP - 22.4 L per mole
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
1.568 L Ne ≈ 2 L Ne