Answer:
6.67 moles
Explanation:
Given that:-
Moles of hydrogen gas produced = 10.0 moles
According the reaction shown below:-

3 moles of hydrogen gas are produced when 2 moles of aluminium undergoes reaction.
Also,
1 mole of hydrogen gas are produced when
moles of aluminium undergoes reaction.
So,
10.0 moles of hydrogen gas are produced when
moles of aluminium undergoes reaction.
<u>Moles of Al needed =
moles = 6.67 moles</u>
True, because if it wasn't a chemical reaction it would have proceeded to stay the same. but it begins to bubble.
sorry if this isn't the best answer I'm trying my best.
Answer:
0.302 moles
Explanation:
Data given
Mass of Pb(NO₃)₂ = 100 g
Moles of Pb(NO₃)₂ = ?
Solution:
To find mole we have to know about molar mass of Pb(NO₃)₂
So,
Molar mass of Pb(NO₃)₂ = 207 + 2[14 + 3(16)]
= 207 + 2[14 + 48]
= 207 + 124
Molar mass of Pb(NO₃)₂ = 331 g/mol
Formula used :
no. of moles = mass in grams / molar mass
Put values in above formula
no. of moles = 100 g / 331 g/mol
no. of moles = 0.302 moles
no. of moles of Pb(NO₃)₂ = 0.302 moles
Bioaccumulation refers to the accumulation of chemicals in a living organism. The compound or chemical accumulates at a rate faster than it is being metabolized or excreted by the organism. Chemicals bioaccumulate by binding to the proteins and fats in an organism while others bioaccumulate through the repeated consumption of contaminated organisms.
Pesticides containing chemicals that dissolve easily in fat but not in water tend to bioaccumulate. Pesticides that contain chemicals that can easily be metabolized by organisms do not bioaccumulate. In summary, the nature of the chemical used in pesticides and the capability of organisms to metabolize the said chemicals can dictate whether it will bioaccumulate or not.