Answer:
The average adult brain is about 15 cm and weighs from 1300 to 1400 grams. So around 3 pounds
So not yet, im not an adult yet
Answer:
See explaination and attachment.
Explanation:
Navier-Stokes equation is to momentum what the continuity equation is to conservation of mass. It simply enforces F=ma in an Eulerian frame.
The starting point of the Navier-Stokes equations is the equilibrium equation.
The first key step is to partition the stress in the equations into hydrostatic (pressure) and deviatoric constituents.
The second step is to relate the deviatoric stress to viscosity in the fluid.
The final step is to impose any special cases of interest, usually incompressibility.
Please kindly check attachment for step by step solution.
Answer:
The correct option is;
(a) High power density
Explanation:
The power density of a material is the amount of power per unit volume of the material. Power density, in the context of transformers, fuel cells, batteries, motors, and power supply units, is measured with respect to the volume, and the units is given as W/m³
A system such as a capacitor with an high power density has the capacity to put out large energy amount from a small volume. A capacitor with a high power density, can produce the same power output as a car battery and is said to have a high power density.
D sounds more formal than the rest.
Answer:
389.6 W/m²
Explanation:
The power radiated to the surroundings by the small hot surface, P = σεA(T₁⁴ - T₂⁴) where σ = Stefan-Boltzmann constant = 5.67 × 10⁻⁸ W/m²-K⁴, ε = emissivity = 0.8. T₁ = temperature of small hot surface = 430 K and T₂ = temperature of surroundings = 400 K
So, P = σεA(T₁⁴ - T₂⁴)
h = P/A = σε(T₁⁴ - T₂⁴)
Substituting the values of the variables into the equation, we have
h = 5.67 × 10⁻⁸ W/m²-K⁴ × 0.8 ((430 K )⁴ - (400 K)⁴)
h = 5.67 × 10⁻⁸ W/m²-K⁴ × 0.8 (34188010000 K⁴ - 25600000000 K⁴)
h = 5.67 × 10⁻⁸ W/m²-K⁴ × 0.8 × 8588010000K⁴
h = 38955213360 × 10⁻⁸ W/m²
h = 389.55213360 W/m²
h ≅ 389.6 W/m²