Answer:
Planned maintenance refers to any scheduled activity carried out to check a machine is working ok and diagnose procedures to fix it if need it. On the other hand, predictive mainteance is all the techniques which help to define if a machine requires or not maintenance activities so far.
Explanation:
Planned maintenance is based on preventive routines to ensure a machine is working in acceptable conditions and at the same time prevent them to change to risky values performing acticities like parts replacement, cleaning, etc. The key of this maintenance is schedule, that is to say, is a maintenance that has to be carried out constantly each certain time. Predictive maintenance is different because it is used to define if a machie needs any kind of inspection or if, on the contrary, the machine can continue operating without any intervention. The good point about predictive maintenance is the capability of telling when a maintenance is required and when is no necessarily required which is ideal to save costs.
That means “ if possible then link”
Answer:
the elevation at point X is 2152.72 ft
Explanation:
given data
elev = 2156.77 ft
BS = 2.67 ft
FS = 6.72 ft
solution
first we get here height of instrument that is
H.I = elev + BS ..............1
put here value
H.I = 2156.77 ft + 2.67 ft
H.I = 2159.44 ft
and
Elevation at point (x) will be
point (x) = H.I - FS .............2
point (x) = 2159.44 ft - 6.72 ft
point (x) = 2152.72 ft
Answer:
If the heat engine operates for one hour:
a) the fuel cost at Carnot efficiency for fuel 1 is $409.09 while fuel 2 is $421.88.
b) the fuel cost at 40% of Carnot efficiency for fuel 1 is $1022.73 while fuel 2 is $1054.68.
In both cases the total cost of using fuel 1 is minor, therefore it is recommended to use this fuel over fuel 2. The final observation is that fuel 1 is cheaper.
Explanation:
The Carnot efficiency is obtained as:

Where
is the atmospheric temperature and
is the maximum burn temperature.
For the case (B), the efficiency we will use is:

The work done by the engine can be calculated as:
where Hv is the heat value.
If the average net power of the engine is work over time, considering a net power of 2.5MW for 1 hour (3600s), we can calculate the mass of fuel used in each case.

If we want to calculate the total fuel cost, we only have to multiply the fuel mass with the cost per kilogram.

Answer:
7.7 kN
Explanation:
The capacity of a material having a crack to withstand fracture is referred to as fracture toughness.
It can be expressed by using the formula:

where;
fracture toughness K = 137 MPa
geometry factor Y = 1
applied stress
= ???
crack length a = 2mm = 0.002
∴




Now, the tensile impact obtained is:

P = A × σ
P = 1728.289 × 4.5
P = 7777.30 N
P = 7.7 kN