Answer:
Modulus of resilience will be 
Explanation:
We have given yield strength 
Elastic modulus E = 104 GPa
We have to find the modulus
Modulus of resilience is given by
Modulus of resilience
, here
is yield strength and E is elastic modulus
Modulus of resilience
Answer:
Explanation:
f = 50.0 Hz, L = 0.650 H, π = 3.14
C = 4.80 μF, R = 301 Ω resistor. V = 120volts
XL = wL = 2πfL
= 2×3.14×50* 0.650
= 204.1 Ohm
Xc= 1/wC
Xc = 1/2πfC
Xc = 1/2×3.14×50×4.80μF
= 1/0.0015072
= 663.48Ohms
1. Total impedance, Z = sqrt (R^2 + (Xc-XL)^2)= √ 301^2+ (663.48Ohms - 204.1 Ohm)^2
√ 90601 + (459.38)^2
√ 90601+211029.98
√ 301630.9844
= 549.209
Z = 549.21Ohms
2. I=V/Z = 120/ 549.21Ohms =0.218Ampere
3. P=V×I = 120* 0.218 = 26.16Watt
Note that
I rms = Vrms/Xc
= 120/663.48Ohms
= 0.18086A
4. I(max) = I(rms) × √2
= 0.18086A × 1.4142
= 0.2557
= 0.256A
5. V=I(max) * XL
= 0.256A ×204.1
=52.2496
= 52.250volts
6. V=I(max) × Xc
= 0.256A × 663.48Ohms
= 169.85volts
7. Xc=XL
1/2πfC = 2πfL
1/2πfC = 2πf× 0.650
1/2×3.14×f×4.80μF = 2×3.14×f×0.650
1/6.28×f×4.8×10^-6 = 4.082f
1/0.000030144× f = 4.082×f
1 = 0.000030144×f×4.082×f
1 = 0.000123f^2
f^2 = 1/0.000123048
f^2 = 8126.922
f =√8126.922
f = 90.14 Hz
Answer:
Hello your question is incomplete attached below is the missing part and answer
options :
Effect A
Effect B
Effect C
Effect D
Effect AB
Effect AC
Effect AD
Effect BC
Effect BD
Effect CD
Answer :
A = significant
B = significant
C = Non-significant
D = Non-significant
AB = Non-significant
AC = significant
AD = Non-significant
BC = Non-significant
BD = Non-significant
CD = Non-significant
Explanation:
The dependent variable here is Time
Effect of A = significant
Effect of B = significant
Effect of C = Non-significant
Effect of D = Non-significant
Effect of AB = Non-significant
Effect of AC = significant
Effect of AD = Non-significant
Effect of BC = Non-significant
Effect of BD = Non-significant
Effect of CD = Non-significant
Answer:
Explanation:
Given
charge is placed at 
another charge of
is at 
We know that Electric field due to positive charge is away from it and Electric field due to negative charge is towards it.
so net electric field is zero somewhere beyond negatively charged particle
Electric Field due to
at some distance r from it

Now Electric Field due to
is

Now 



thus 
Thus Electric field is zero at some distance r=1.43 cm right of
Answer: you can watch a video on how to solve this question on you tube