R01= 14.1 Ω
R02= 0.03525Ω
<h3>Calculations and Parameters</h3>
Given:
K= E2/E1 = 120/2400
= 0.5
R1= 0.1 Ω, X1= 0.22Ω
R2= 0.035Ω, X2= 0.012Ω
The equivalence resistance as referred to both primary and secondary,
R01= R1 + R2
= R1 + R2/K2
= 0.1 + (0.035/9(0.05)^2)
= 14.1 Ω
R02= R2 + R1
=R2 + K^2.R1
= 0.035 + (0.05)^2 * 0.1
= 0.03525Ω
Read more about resistance here:
brainly.com/question/17563681
#SPJ1
Answer:
ideal fluid follow Newtonian law
that is, shear stress is directly proportional to rate change of shear strain.
watch handwritten explanation
Answer:
Metal wireways are sheet metal "U"s with removable housing for protecting electrical equipment, wires, and cables.
Explanation:
These are especially used to run wire in manufacturing environments.
Answer:
Jesus is always the answer
Answer:
Tmax= 46.0 lb-in
Explanation:
Given:
- The diameter of the steel rod BC d1 = 0.25 in
- The diameter of the copper rod AB and CD d2 = 1 in
- Allowable shear stress of steel τ_s = 15ksi
- Allowable shear stress of copper τ_c = 12ksi
Find:
Find the torque T_max
Solution:
- The relation of allowable shear stress is given by:
τ = 16*T / pi*d^3
T = τ*pi*d^3 / 16
- Design Torque T for Copper rod:
T_c = τ_c*pi*d_c^3 / 16
T_c = 12*1000*pi*1^3 / 16
T_c = 2356.2 lb.in
- Design Torque T for Steel rod:
T_s = τ_s*pi*d_s^3 / 16
T_s = 15*1000*pi*0.25^3 / 16
T_s = 46.02 lb.in
- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:
T = min ( 2356.2 , 46.02 )
T = 46.02 lb-in