It is effected by diffusion (the power of smell and wind spread) but a solid is not.
The least prevalent gas in the atmosphere was oxygen several billion years ago. This is because it was only around 2.4-3 billion years ago when the first photosynthetic bacteria evolved, meaning they produce food from inorganic compounds such as carbon dioxide and water to produce glucose and oxygen. Oxygen is then released in the atmosphere and this is called <em>The Great Oxygenation Event</em>.
The characteristic of the Bohr model that would best support his observation is this assumption: "The energy of the electron in an orbit is proportional to its distance from the nucleus. The further the electron is from the nucleus, the more energy it has." The discrete, bright, colored lines might represent the electrons and its distance from the nucleus. The lights are caused by the energy it has.
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha decay (-decay), beta decay (-decay), and gamma decay (-decay), all of which involve emitting one or more particles or photons. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the usual electromagnetic and strong forces.[1]