The steps would be :
1. Rapid and reversible formation of local secondary structure
2. Formation of domain through cooperative aggregation of folding nuclei
3. molten globule formation of assembled domains
4. adjustment in conformation of domain.
5. Final protein monomer formation
Answer:
a. Concave down
Linear increasing
b. Increases the reaction rate
c. The reaction approaches the saturation point of the enzyme
Explanation:
a. For the reaction with enzyme, the shape is concave down. The action of the enzyme on the preferred substrate is initially very rapid and decreases as the enzyme becomes saturated and the ratio of products to substrate increases to approach an equilibrium rate of reaction
For the reaction without enzyme, the shape is linear and increasing. Increase in the concentration of the substrate will increase the number of effective collisions that lead into product formation leading to an increased rate of the chemical reaction
b. The enzyme increases the proportion of effective combination of substrates to form the products
c. The curve of the reaction with enzyme flattens out because as the concentration of the substrate increases while that of the enzyme remains the same, the enzyme becomes saturated and less able to increase the rate of the reaction of the excess substrate.
Answer:
0.6 moles of CaO will produced.
Explanation:
Given data:
Mass of calcium = 23.9 g
Moles of CaO produced = ?
Solution:
Chemical equation:
2Ca + O₂ → 2CaO
Number of moles of calcium:
Number of moles = mass/ molar mass
Number of moles = 23.9 g / 40 g/mol
Number of moles = 0.6 mol
Now we will compare the moles of calcium and CaO.
Ca : CaO
2 : 2
0.6 : 0.6
0.6 moles of CaO will produced.