Butter won't melt in a fridge because of intermolecular tensions. While the bonds inside of the fat molecules are unbroken, the attractions between the fat molecules are weaker.
What intermolecular forces are present in butter?
The intermolecular forces known as London dispersion forces are the weakest and are most prominent in hydrocarbons. Due to the fact that butter molecules are hydrocarbons, London dispersion forces do exist between them.
How do intermolecular forces affect melting?
More energy is required to stop the attraction between these molecules as the intermolecular forces become more powerful. Because of this, rising intermolecular forces are accompanied with rising melting points.
Which forces are intramolecular and which are intermolecular?
Intramolecular forces are those that hold atoms together within molecules. The forces that hold molecules together are known as intermolecular forces.
Learn more about intermolecular forces: brainly.com/question/9328418
#SPJ4
Answer:
Approximately 0.36 grams, because copper (II) chloride acts as a limiting reactant.
Explanation:
- It is a stichiometry problem.
- We should write the balance equation of the mentioned chemical reaction:
<em>2Al + 3CuCl₂ → 3Cu + 2AlCl₃.</em>
- It is clear that 2.0 moles of Al foil reacts with 3.0 moles of CuCl₂ to produce 3.0 moles of Cu metal and 2.0 moles of AlCl₃.
- Also, we need to calculate the number of moles of the reported masses of Al foil (0.50 g) and CuCl₂ (0.75 g) using the relation:
<em>n = mass / molar mass</em>
- The no. of moles of Al foil = mass / atomic mass = (0.50 g) / (26.98 g/mol) = 0.0185 mol.
- The no. of moles of CuCl₂ = mass / molar mass = (0.75 g) / (134.45 g/mol) = 5.578 x 10⁻³ mol.
- <em>From the stichiometry Al foil reacts with CuCl₂ with a ratio of 2:3.</em>
∴ 3.85 x 10⁻³ mol of Al foil reacts completely with 5.578 x 10⁻³ mol of CuCl₂ with <em>(2:3)</em> ratio and CuCl₂ is the limiting reactant while Al foil is in excess.
- From the stichiometry 3.0 moles of CuCl₂ will produce the same no. of moles of copper metal (3.0 moles).
- So, this reaction will produce 5.578 x 10⁻³ mol of copper metal.
- Finally, we can calculate the mass of copper produced using:
mass of Cu = no. of moles x Atomic mass of Cu = (5.578 x 10⁻³ mol)(63.546 g/mol) = 0.354459 g ≅ 0.36 g.
- <u><em>So, the answer is:</em></u>
<em>Approximately 0.36 grams, because copper (II) chloride acts as a limiting reactant.</em>