I don't fully understand your question, but I believe that plants have functions that are vital to the planet. They take sunlight, make it into food for themselves, and release oxygen that we need to survive.
117.22 g are needed to react with an excess of Fe2O3 to produce 156.2 g of Fe.
Explanation:
Moles of Fe = Mass of Fe in grams / Atomic weight of Fe
= 156.2 / 55.847
Moles of Fe = 2.79.
The ratio between CO and Fe id 3 : 2.
Moles CO needed = 2.79 * (3 / 2)
= 4.185.
To calculate Atomic weight of CO,
Atomic weight of carbon = 12.011
Atomic weight of oxygen= 15.9994
Atomic weight of CO = 12.011 + 15.9994 = 28.01 g / mol.
Mass of CO = 4.185 * 28.01 = 117.22 g.
I'm not sure on this I'm sorry I can't help you I wish I could!
Answer:
(A) is 0.0773 mol B2H6
(C) is 2.79 x 10^23 H atoms
Explanation:
Questions (A) and (B) are the same.
2.14 g B2H6 x (1 mol B2H6/27.668g B2H6) = 0.0773 mol B2H6 (A)
<u>27.668 is the molar mass of B2H6 calculated from the period table: </u>
(2 x 10.81) + (6 x 1.008) = 27.668
1.008 is the mass of H and 10.81 is the mass of B
(C)
0.0773 mol B2H6 x (6 mol H/ 1 mol B2H6) x (6.022 x 10^23 H atoms/1 mol H)
= 2.79 x 10^23 hydrogen atoms
Further Explanation:
- For every 1 mol of B2H6, there are 6 moles of H (indicated by the subscript)
- 6.022 x 10^23 is Avogrado's number and it equals to 1 mol of anything
- Avogrado's number can be in units of atoms, molecules, or particles