The atomic number of Li is 3
Electron configuration of Li : 1s² 2s¹
The atomic number of Na is 11
Electron configuration of Na : 1s²2s²2p⁶3s¹
Thus there is one electron in the valence shell of Li (2s¹) and that of Na (3s¹). However, the valence electron in Na is in a shell that is farther away from the nucleus compared to that of Li. As a result, the Na valence electron will be held less tightly by the nucleus i.e. it will experience a reduced nuclear attraction and can be removed easily than the Li 2s electron.
Answer:
It would move either left or right
Explanation: Taking assumption that,
Fructose + ATP fructose - 6 - phosphate + ADP (The standard free energy of hydrolysis for fructose-6-phosphate is - 15.9 kJ/mol.) 3 - phosphoglycerate + ATP 1,3 - bisphosphoglycerate + ADP (The standard free energy of hydrolysis for 1,3-bisphosphoglycerate is - 4 9.3 kJ/mol.) pyruvate + ATP phosphoenolpyruvate + ADP (The standard free energy of hydrolysis for phosphoenolpyruvate -is -61.9 kJ/mol.)
Answer is A bc you can get electrocuted
In hot water the molecules move faster versus In cold water they move slower (hope that helps)