Answer:
Explanation:
Combustion releases energy in a single step in the form of light and heat. Whereas in respiration, energy is released in steps and is stored in the form of ATP.
<span>The ideal mechanical advantage represents the number of times the input force is multiplied under ideal conditions, that is with no friction. Actual mechanical advantage on the other hand stands for the number of times the input force is multiplied.
Hence; IMA (ideal mechanical advantage)=Le/Lr
The Lr =0.3 +1.2 = 1.5 and Le= 0.3
= 0.3/1.5
= 1/5;
therefore the correct answer is 0.2</span>
Answer : The partial pressure of the
in the tank in psia is, 32.6 psia.
Explanation :
As we are given 75 %
and 25 %
in terms of volume.
First we have to calculate the moles of
and
.


Now we have to calculate the mole fraction of
.


Now we have to calculate the partial pressure of the
gas.


conversion used : (1 Kpa = 0.145 psia)
Therefore, the partial pressure of the
in the tank in psia is, 32.6 psia.
From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 gram
mass of chlorine = 35.5 grams
Therefore,
molar mass of CH2Cl2 = 12 + 2(1) + 2(35.5) = 85 grams
number of moles = mass / molar mass
number of moles of CH2Cl2 = 66.05 / 85 = 0.777 moles
One mole of CH2Cl2 contains two moles of Cl and each chlorine mole has Avogadro's number of atoms in it.
Therefore,
number of chlorine atoms in 0.777 moles of CH2Cl2 can be calculated as follows:
number of atoms = 0.777 * 2 * 6.022 * 10^23 = 9.358 * 10^23 atoms
Now, we will take log base 10 for this number:
log (9.358 * 10^23) = 23.97119