Answer:
What group of people ay?
Maybe look at their differences in appearance: height, size, weight, skin color, clothing choice?
Answer:
10 Litre
Explanation:
Given that ::
v1 = 25L ; n1 = 1.5 mole ; v2 =? ; n2 = (1.5-0.9) = 0.6 mole
Using the relation :
(n2 * v1) / n1 = (n2 * v2) / n2
v2 = (n2 * v1) / n1
v2 = (0.6 mole * 25 Litre) / 1.5 mole
v2 = 15 / 1.5 litre
v2 = 10 Litre
Answer:
Basically, paramagnetic and diamagnetic refer to the way a chemical species interacts with a magnetic field. More specifically, it refers to whether or not a chemical species has any unpaired electrons or not.
A diamagnetic species has no unpaired electrons, while a paramagnetic species has one or more unpaired electrons.
Now, I won't go into too much detail about crystal field theory in general, since I assume that you're familiar with it.
So, you're dealing with the hexafluorocobaltate(III) ion, [CoF6]3â’, and the hexacyanocobaltate(III) ion, [Co(CN)6]3â’.
You know that [CoF6]3â’ is paramagnetic and that [Co(CN)6]3â’ is diamagnetic, which means that you're going to have to determine why the former ion has unpaired electrons and the latter does not.
Both complex ions contain the cobalt(III) cation, Co3+, which has the following electron configuration
Co3+:1s22s22p63s23p63d6
For an isolated cobalt(III) cation, all these five 3d-orbitals are degenerate. The thing to remember now is that the position of the ligand on the spectrochemical series will determine how these d-orbtals will split.
More specifically, you can say that
a strong field ligand will produce a more significant splitting energy, Δ a weak field ligand will produce a less significant splitting energy, Δ
Now, the spectrochemical series looks like this
http://chemedu.pu.edu.tw/genchem/delement/9.htmhttp://chemedu.pu.edu.tw/genchem/delement/9.htm
Notice that the cyanide ion, CNâ’, is higher on the spectrochemical series than the fluoride ion, Fâ’. This means that the cyanide ion ligands will cause a more significant energy gap between the eg and t2g orbitals when compared with the fluoride ion ligands.
http://wps.prenhall.com/wps/media/objects/3313/3393071/blb2405.htmlhttp://wps.prenhall.com/wps/media...
In the case of the hexafluorocobaltate(III) ion, the splitting energy is smaller than the electron pairing energy, and so it is energetically favorable to promote two electrons from the t2g orbitals to the eg orbitals → a high spin complex will be formed.
This will ensure that the hexafluorocobaltate(III) ion will have unpaired electrons, and thus be paramagnetic.
On the other hand, in the case of the hexacyanocobaltate(III) ion, the splitting energy is higher than the electron pairing energy, and so it is energetically favorable to pair up those four electrons in the t2g orbitals → a low spin complex is formed.
Since it has no unpaired electrons, the hexacyanocobaltate(III) ion will be diamagnetic.
1 inch is equivalent to 0.0254 meters. To find the answer, multiply the number of inches by 0.0254.
349.5 x 0.0254 = 8.8773
Answer: Three things are missing:
i) Graph title.
ii) Label for the vertical axis.
iii) The scale and the units for the horizontal axis.
Justification:
1) Find the graph in the image attached.
2) What does the graph represent? You cannot tell because it does not show the tittle.
Since you are told in the statement that it is a temperature and volume graph, the appropiate title would be:
Temperature vs. Volume.
3) The vertical axis also must be properly labeled, including the units.
A good label for the vertical axis of this graph might be: Volume (cm³). It migh also be liters, gallons, or other volume unit.
4) Although the horizontal axis is labeled, it does not indicate the units and the scale. So, you know neither if the temperature shown is celsius, (°C), farenheti (°F), kelvin (K), or rankine (R) (those are the four major scales of temperature), nor how much each division represent (1, 5, 10, 10, 50, 100?)