Explanation:
Artificial gravity can be created using a centripetal force. A centripetal force directed towards the center of the turn is required for any object to move in a circular path. In the context of a rotating space station it is the normal force provided by the spacecraft's hull that acts as centripetal force.
Hope it helps.
Answer:
A) ≥ 325Kpa
B) ( 265 < Pe < 325 ) Kpa
C) (94 < Pe < 265 )Kpa
D) Pe < 94 Kpa
Explanation:
Given data :
A large Tank : Pressures are at 400kPa and 450 K
Throat area = 4cm^2 , exit area = 5cm^2
<u>a) Determine the range of back pressures that the flow will be entirely subsonic</u>
The range of flow of back pressures that will make the flow entirely subsonic
will be ≥ 325Kpa
attached below is the detailed solution
<u>B) Have a shock wave</u>
The range of back pressures for there to be shock wave inside the nozzle
= ( 265 < Pe < 325 ) Kpa
attached below is a detailed solution
C) Have oblique shocks outside the exit
= (94 < Pe < 265 )Kpa
D) Have supersonic expansion waves outside the exit
= Pe < 94 Kpa
Answer:
conversion or a neutron to a proton and electron. the electronic is emitted
Answer:
Because the 'ing' in the English language is added to certain verbs to make them nouns.
Explanation:
Hope this helps :D
Answer:
x = 3.6 [m]
Explanation:
This problem can be easily solved using a static analysis of forces acting on the ladder, taking into account the respective distances. For easy understanding, a free body diagram should be made.
We perform a sum of force on the X-axis equal to zero, to find that the force exerted by the wall is equal to the friction force on the floor.
Then we perform a summation of forces on the Y axis, to determine that the normal force exerted by the floor is equal to the weight of the ladder.
We know that the friction force is equal to the product of normal force by the coefficient of friction.
In this way, by relating the friction force to the equations deduced above we can find the force exerted by the wall.
Then we make a summation of moments around the base point of the ladder, the equation realized can be seen in the attached image.
In the last analysis we can find the relationship between the horizontal and vertical distance of the ladder, with respect to the wall and the floor.
Then with the complementary analysis of the Pythagorean theorem we can find another additional equation.
The result of the greater distance is 3.6 [m]