1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verizon [17]
3 years ago
14

If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite d

irection, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Physics
1 answer:
Yuliya22 [10]3 years ago
3 0

Incomplete question as the mass of baseball is missing.I have assume 0.2kg mass of baseball.So complete question is:

A baseball has mass 0.2 kg.If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.

Answer:

ΔP=20 kg.m/s

Explanation:

Given data

Mass m=0.2 kg

Initial speed Vi=-44.5m/s

Final speed Vf=55.5 m/s

Required

Change in momentum ΔP

Solution

First we take the batted balls velocity as the final velocity and its direction is the positive direction and we take the pitched balls velocity as the initial velocity and so its direction will be negative direction.So we have:

v_{i}=-44.5m/s\\v_{f}=55.5m/s

Now we need to find the initial momentum

So

P_{1}=m*v_{i}

Substitute the given values

P_{1}=(0.2kg)(-44.5m/s)\\P_{1}=-8.9kg.m/s

Now for final momentum

P_{2}=mv_{f}\\P_{2}=(0.2kg)(55.5m/s)\\P_{2}=11.1kg.m/s

So the change in momentum is given as:

ΔP=P₂-P₁

=[(11.1kg.m/s)-(-8.9kg.m/s)]\\=20kg.m/s

ΔP=20 kg.m/s

You might be interested in
Calculate the required rate of return for Climax Inc., assuming that (1) investors expect a 4.0% rate of inflation in the future
Westkost [7]

Answer:

Required rate of return = 18.5 %

Explanation:

given,                            

rate of inflection = 4 %

risk free rate = 3 %                      

market risk premium = 5 %                    

firm has a beta  = 2.30                                  

rate of return has averaged 15.0% over the last 5 years

now,                                                                      

Nominal risk free rate = risk free rate  + inflation

                                    = 3%  +  4%

                                   = 7%

Required rate of return = Nominal risk free rate + β (RPM)

                                       = 7%       +          2.3 x 5.0%

Required rate of return = 18.5 %

5 0
3 years ago
A man does 4,475 J of work in the process of pushing his 2.50 103 kg truck from rest to a speed of v, over a distance of 26.0 m.
Tcecarenko [31]

Answer:

a) 1.89 m/s  b) 172.1 N

Explanation:

a)

  • Applying the work-energy theorem, if we can neglect the friction between truck and road, the total change in kinetic energy must be equal to the work done by the external forces.
  • This work, is just 4,475 J.
  • So we can write the following equation:

        \Delta K = \frac{1}{2} * m*v^{2} = 4,475 J

  • where m= mass of the truck = 2.5*10³ kg.
  • So, we can find the speed v, as follows:

        v =\sqrt{\frac{2*W}{m}} =\sqrt{\frac{2*4,475J}{2.5e3kg} }  = 1.89 m/s

b)

  • The work done by the man, is just the horizontal force applied, times the displacement produced by the force horizontally:

        W = F*d

  • We can solve for F, as follows:

        F = \frac{W}{d} = \frac{4,475 J}{26.0m} =  172.1 N

4 0
3 years ago
If a person weighs 818 N on earth and 5320 N on the surface of a nearby planet, what is the acceleration due to gravity on that
alexandr402 [8]

Answer:

g'=63.74\ m/s^2

Explanation:

It is given that,

Weight of the person on Earth, W = 818 N

Weight of a person is given by the following formula as :

W=mg

g is the acceleration due to gravity on earth

m=\dfrac{W}{g}

m=\dfrac{818\ N}{9.8\ m/s^2}

m = 83.46 kg

The mass of an object is same everywhere. It does not depend on the location.

Let W' is the weight of the person on the surface of a nearby planet, W' = 5320 N

g' is the acceleration due to gravity on that planet. So,

g'=\dfrac{W'}{m}

g'=\dfrac{5320\ N}{83.46\ kg}                

g'=63.74\ m/s^2

So, the acceleration due to gravity on that planet is 63.74\ m/s^2. Hence, this is the required solution.                                                                    

6 0
3 years ago
OSHA is the:
KATRIN_1 [288]
C Occupational Safety and Health Administration
8 0
2 years ago
What must exist for the engineering process to begin?
Vlad1618 [11]

Answer:

d

Explanation:

rzp-yyib-oiv

plèase jóin ón góógle mèèt

5 0
3 years ago
Read 2 more answers
Other questions:
  • A piece of aluminum requires 4,000 J of energy to change
    15·1 answer
  • An object with a mass of 62.5 kg accelerates 12.3 m/s2 when an unknown force is applied to it. What is the amount of the force?
    6·1 answer
  • Which instrument of the roman rupublic held the most power?​
    6·1 answer
  • A disk between vertebrae in the spine is subjected to a shearing force of 425 N. Find its shear deformation, taking it to have a
    13·1 answer
  • Βββββββββββββ<br>fbntdbsv
    13·1 answer
  • What document details the type of medical care that you wish to receive if you become incapacitated due to a physical or mental
    10·2 answers
  • a hot piece of copper is placed in an insulated cup. what is the final temperature of the water and copper?
    14·1 answer
  • NEED ANSWER REAL QUICK
    9·2 answers
  • The rotating loop in an AC generator is a square l on each side. It is rotated at frequency f in a uniform field of B. The gener
    13·1 answer
  • A 75 watt light bulb is plugged into a 15 volt outlet. What is the current flow?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!