I believe it’s self-referent encoding
Answer:
Yes
Explanation: Electric and magnetic field are known to be inter-related, this implies that for any current carrying conductor there is a resulting magnetic field around the wire ( for example a current carrying conductor deflects a compass) and a magnetic field has been known to produce some amount current based on the<em> </em>principle of electromagnetic induction by Micheal Faraday.
The strength of magnetic field generated by a current carrying conductor is given by Bio-Savart law (purely mathematical) which is
B =
B= strength of magnetic field
I =current on conductor
r = distance on any point of the conductor relative to it center
If a current carrying could generate this magnitude of magnetic field, thus this magnetic field has the ability to interact (exert a force on any magnetic material) with any other magnetic material including a magnet.
Yes, a current carrying conductor can exert a force on a magnetic field
Answer:The small, individual helium molecules can escape through the tiny holes in the latex far more easily than the conjoined oxygen or nitrogen molecules can. ... This is why your helium balloons deflate faster than the ones you fill with air.
Explanation:
-- 6 people all trying to push a car out of snow
-- a Tug-o-War with 30 people of different sizes pulling on each end of the rope
-- you and your sister both pulling on the same doll (or Transformer)
-- lifting a book up from the table to a high shelf
taking a book down from a high shelf to the table
(one force is you; another force is gravity)
-- grabbing your big dog by his collar and trying to bring him inside
-- three people at the table all grab the ketchup bottle at the same time
The answer is orbit, we are orbiting the sun as the moon orbits us