1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ki77a [65]
3 years ago
12

A ball connected to a 1.1 m string and is swing in circular fashion. It’s tangential velocity is 15 m/s. What is its centripetal

acceleration?
Physics
1 answer:
musickatia [10]3 years ago
6 0

Answer:

ac = 204 [m/s²]

Explanation:

To solve this problem we must use the following equation that relates the tangential velocity to the radius of rotation.

ac = v²/r

where:

v = tangential velocity = 15 [m/s]

r = radius = 1.1 [m]

Now replacing we have:

ac = (15)²/1.1

ac = 204 [m/s²]

You might be interested in
How much heat is needed to melt 1.5kg of ice and then to raise the temperature of the
Kipish [7]

Answer:

> The amount of heat required to melt ice and raise the temperature of water T o C T^oC ToC is Q = m L f + m c Δ T Q=mL_f+mc\Delta T Q=mLf+mcΔT Here m = 1.5 k g m=1.5 kg m=1.5kg L f = 3.33 ∗ 1 0 5 J

3 0
2 years ago
How are coal types classified?
rosijanka [135]
It’s carbon and it’s heat value
7 0
3 years ago
Read 2 more answers
25 PTS
yarga [219]
The answer would be C
7 0
3 years ago
Four weightlifters (A-D) enter a competition. The mass, distance, and time of their lifts are shown in the table.
siniylev [52]

Let Pa, Pb, Pc, and Pd be the powers delivered by weightlifters A, B, C, and D, respectively.

Use this equation to determine each power value:

P = W÷Δt

P is the power, W is the work done by the weightlifter, and Δt is the elapsed time.

A) Determining Pa:

Pa = W÷Δt

The weightlifter does work to lift the weight up a certain distance. Therefore the work done is equal to the weight's gain in gravitational potential energy. The equation for gravitational PE is

PE = mgh

PE is the potential energy, m is the mass of the weight, g is the acceleration of objects due to earth's gravity, and h is the distance the weight was lifted.

We can equate W = PE = mgh, therefore we can make the following substitution:

Pa = mgh÷Δt

Given values:

m = 100.0kg

g = 9.81m/s²

h = 2.25m

Δt = 0.151s

Plug in the values and solve for Pa

Pa = 100.0×9.81×2.25÷0.151

<u>Pa = 14600W</u> (watt is the SI derived unit of power)

B) Determining Pb:

Let us use our new equation derived in part A to solve for Pb:

Pb = mgh÷Δt

Given values:

m = 150.0kg

g = 9.81m/s²

h = 1.76m

Δt = 0.052s

Plug in the values and solve for Pb

Pb = 150.0×9.81×1.76÷0.052

<u>Pb = 49800W</u>

C) Determining Pc:

Pc = mgh÷Δt

Given values:

m = 200.0kg

g = 9.81m/s²

h = 1.50m

Δt = 0.217s

Plug in the values and solve for Pc

Pc = 200.0×9.81×1.50÷0.217

<u>Pc = 13600W</u>

D) Determining Pd:

Pd = mgh÷Δt

Given values:

m = 250.0kg

g = 9.81m/s²

h = 1.25m

Δt = 0.206s

Plug in the values and solve for Pd

Pd = 250.0×9.81×1.25÷0.206

<u>Pd = 14900W</u>

Compare the following power values:

Pa = 14600W, Pb = 49800W, Pc = 13600W, Pd = 14900W

Pc is the lowest value.

Therefore, weightlifter C delivers the least power.

7 0
2 years ago
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is. (a) How m
Gelneren [198K]

Answer:

a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C

Explanation:

Here is the complete question

A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?

Solution

a.

i = Q/t = ne/t

n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s

So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C

       = 4.98 × 10¹⁹ protons

       ≅ 5 × 10¹⁹ protons

b

The total kinetic energy of the protons = heat change of target

total kinetic energy of the protons = n × kinetic energy per proton

                                                         = 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton

                                                         = 30 × 10⁷ J

heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)

ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)

     = 30 × 10⁷/14.62

     = 2.05 × 10⁷ °C

5 0
2 years ago
Other questions:
  • A mining crew extracted two different types of minerals from underground. Then, they transferred the same amount of energy into
    11·2 answers
  • Which statement is true about air pressure acting in an object
    13·1 answer
  • A research study that proposed to describe the behaviors of high school teachers would be
    10·2 answers
  • Which region of the ear gathers information and funnels sound
    7·2 answers
  • Explain why it is important that the balloon is made from an electrical insulator.
    13·1 answer
  • A soccer ball is rolling across a soccer field. The system consists of the
    9·1 answer
  • Friction is a (1)______
    13·1 answer
  • Now, perform the experiment. Using the straw, blow air onto the sand in pan 3. Then use the hair dryer to blow air on the sand i
    14·2 answers
  • if i release one steel ball from the top of a ramp and the other ball from the 40cm mark will they have the same acceleration?
    9·1 answer
  • A body of mass 250g is release from the top of a building. if the body hits the ground with a velocity of 4m/s, calculate th hei
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!