Air pressure is the weight of air on an area. The weight of air
is due to the gravitational forces between the Earth and the
molecules of its atmosphere.
Answer:
7.2 cm
Explanation:
magnetic field, B = 0.301 T
speed, v = 7.92 x 10^5 m/s
mass, m = 4.39 x 10^-27 kg
q = 1.6 x 10^-19 C
The radius of singly changed ion is given by

where, m is the mass of ion, v be the speed of ion, B is the magnetic field and q be the charge

r = 0.072 m
r = 7.2 cm
Answer:
2697.75N/m
Explanation:
Step one
This problem bothers on energy stored in a spring.
Step two
Given data
Compression x= 2cm
To meter = 2/100= 0.02m
Mass m= 0.01kg
Height h= 5.5m
K=?
Let us assume g= 9.81m/s²
Step three
According to the principle of conservation of energy
We know that the the energy stored in a spring is
E= 1/2kx²
1/2kx²= mgh
Making k subject of formula we have
kx²= 2mgh
k= 2mgh/x²
k= (2*0.01*9.81*5.5)/0.02²
k= 1.0791/0.0004
k= 2697.75N/m
Hence the spring constant k is 2697.75N/m
<span>You can use the equation
V_xf = V_xi + a_x(t)
V_xf = 20.0m/s
V_xi = 0m/s
ax = 2.0
t
Thus, solve for t and get 10seconds
and then take 5 seconds to break after 20 seconds of driving
so for
a) 10 + 20 + 5 = 35 seconds
</span><span>for part b)
You can use the formula
Delta x/Delta t = average velocity
Need to find xf, knowing xi = 0
Thus, use the formula
x_f = x_i + V_xi(t) + (1/2)a_x(t)^(2)
x_f = 0 + 0(10) + (1/2)(2.0)(10)^(2)
x_f = 100m
so for the first 10 seconds the truck traveled 100ms
At a speed of 20m/s
20m/s = xm/20s
20*20 = x
x = 400
thus we have 100+400 = 500m
then it slows down from 500m to x_f
thus I use the equation
x_f = x_i + (1/2)(V_xf + V_xi)t
x_f = 500 + (1/2)(0 + 20)(5)
x_f = 500 + 50
x_f = 550
therefore the total distance traveled is 550m
</span>
<span>to calculate average velocity
550/35 = 16m/s
thus
V_xavg = 16m/s</span>