Answer:
The average velocity of a train moving along a straight track if its displacement is 192 m was during a time period of 8.0 s is 24
.
Explanation:
Velocity is a physical quantity that expresses the relationship between the space traveled by an object and the time used for it. Then, the average velocity relates the change in position to the time taken to effect that change.

Velocity considers the direction in which an object moves, so it is considered a vector magnitude.
In this case, the displacement is 192 m and the time period is 8 s. Replacing:

Solving:
velocity= 24 
<em><u>The average velocity of a train moving along a straight track if its displacement is 192 m was during a time period of 8.0 s is 24 </u></em>
<em><u>.</u></em>
Answer:
5.5 x 10^5 N/C
Explanation:
t = 0.001 s
Δp = - 8.8 x 10^-17 kg m /s
Force is equal to the rate of change of momentum.
F = Δp / Δt
F = (8.8 x 10^-17) / 0.001 = 8.8 x 10^-14 N
q = 1.6 x 10^-19 C
Electric field, E = F / q = (8.8 x 10^-14) / (1.6 x 10^-19)
E = 5.5 x 10^5 N/C
Explanation:
1 mega Hertz = 1000000 hertz
Answer:
b) True. the force of air drag on him is equal to his weight.
Explanation:
Let us propose the solution of the problem in order to analyze the given statements.
The problem must be solved with Newton's second law.
When he jumps off the plane
fr - w = ma
Where the friction force has some form of type.
fr = G v + H v²
Let's replace
(G v + H v²) - mg = m dv / dt
We can see that the friction force increases as the speed increases
At the equilibrium point
fr - w = 0
fr = mg
(G v + H v2) = mg
For low speeds the quadratic depended is not important, so we can reduce the equation to
G v = mg
v = mg / G
This is the terminal speed.
Now let's analyze the claims
a) False is g between the friction force constant
b) True.
c) False. It is equal to the weight
d) False. In the terminal speed the acceleration is zero
e) False. The friction force is equal to the weight