Answer:
d. 6.0 m
Explanation:
Given;
initial velocity of the car, u = 7.0 m/s
distance traveled by the car, d = 1.5 m
Assuming the car to be decelerating at a constant rate when the brakes were applied;
v² = u² + 2(-a)s
v² = u² - 2as
where;
v is the final velocity of the car when it stops
0 = u² - 2as
2as = u²
a = u² / 2s
a = (7)² / (2 x 1.5)
a = 16.333 m/s
When the velocity is 14 m/s
v² = u² - 2as
0 = u² - 2as
2as = u²
s = u² / 2a
s = (14)² / (2 x 16.333)
s = 6.0 m
Therefore, If the car had been moving at 14 m/s, it would have traveled 6.0 m before stopping.
The correct option is d
Answer:
The answer is given below
Explanation:
u is the initial velocity, v is the final velocity. Given that:

a)
The final velocity of cart 1 after collision is given as:

The final velocity of cart 2 after collision is given as:

b) Using the law of conservation of energy:

The answer is ultra violet radiation. From the air
Answer:
r = 0.5 m
Explanation:
First we find the angular speed of the ball by using its period:
ω = θ/t
For the time period:
ω = angular speed = ?
θ = angular displacement = 2π rad
t = time period = 0.5 s
Therefore,
ω = 2π rad/0.5 s
ω = 12.56 rad/s
Now, for the radius:
v = rω
r = v/ω
where,
v = linear speed = 6.29 m/s
r = radius = ?
r = (6.29 m/s)/(12.56 rad/s)
<u>r = 0.5 m</u>
Answer:
TO MEASURE THE ANGLES OF RAYS
Explanation: