1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
3 years ago
9

A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 13.0 cm , giving it a ch

arge of -17.0 μC .
a) find the electric field just inside the paint layer. Express your answer using three significant figures.

b)Find the electric field just outside the paint layer. Express your answer using three significant figures.

c) Find the electric field 8.00 cm outside the surface of the paint layer.Express your answer using three significant figures.
Physics
1 answer:
Leokris [45]3 years ago
5 0

a) Electric field inside the paint layer: zero

b) Electric field just outside the paint layer: -3.62\cdot 10^7 N/C

c) Electric field 8.00 cm outside the paint layer: -7.27\cdot 10^7 N/C

Explanation:

a)

We can find the electric field inside the paint layer by applying Gauss Law: the total flux of the electric field through a gaussian surface is equal to the charge contained within the surface divided by the vacuum permittivity, mathematically:

\int EdS = \frac{q}{\epsilon_0}

where

E is the electric field

dS is the element of surface

q is the charge within the gaussian surface

\epsilon_0 = 8.85\cdot 10^{-12}F/m is the vacuum permittivity

Here we want to find the electric field just inside the paint layer, so we take a sphere of radius r as Gaussian surface, where

R = 6.5 cm = 0.065 m is the radius of the plastic sphere (half the diameter)

By taking the sphere of radius r, we note that the net charge inside this sphere is zero, therefore

q=0

So we have

\int E dS=0

which means that the electric field inside the paint layer is zero.

b)

Now we want to find the electric field just outside the paint layer: therefore, we take a Gaussian sphere of radius

r=R=0.065 m

The area of the surface is

A=4\pi R^2

And since the electric field is perpendicular to the surface at any point, Gauss Law becomes

E\cdot 4\pi R^2 = \frac{q}{\epsilon_0}

The charge included within the sphere in this case is the charge on the paint layer, therefore

q=-17.0\mu C=-17.0\cdot 10^{-6}C

So, the electric field is:

E=\frac{q}{4\pi \epsilon_0 R^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.065)^2}=-3.62\cdot 10^7 N/C

where the negative sign means the direction of the field is inward, since the charge is negative.

c)

Here we want to calculate the electric field 8.00 cm outside the surface of the paint layer.

Therefore, we have to take a Gaussian sphere of radius:

r=8.00 cm + R = 8.00 + 6.50 = 14.5 cm = 0.145 m

Gauss theorem this time becomes

E\cdot 4\pi r^2 = \frac{q}{\epsilon_0}

And the charge included within the sphere is again the charge on the paint layer,

q=-17.0\mu C=-17.0\cdot 10^{-6}C

Therefore, the electric field is

E=\frac{q}{4\pi \epsilon_0 r^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.145)^2}=-7.27\cdot 10^7 N/C

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

You might be interested in
The least common fossils are those that have been<br> petrified<br> frozen<br> buried<br> distilled
Alchen [17]

Answer: Frozen fossils

6 0
3 years ago
One object (m1 = 0.220 kg) is moving to the right with a speed of 2.10 m/s when it is struck from behind by another object (m2 =
blagie [28]

Answer:

vf₁  = 6.86 m/s , to the right

vf₂ =  2.96 m/s, to the right

Explanation:

Theory of collisions  

Linear momentum is a vector magnitude (same direction of the velocity) and its magnitude is calculated like this:  

p=m*v  

where  

p:Linear momentum  

m: mass  

v:velocity  

There are 3 cases of collisions : elastic, inelastic and plastic.  

For the three cases the total linear momentum quantity is conserved:  

P₀ = Pf Formula (1)  

P₀ :Initial linear momentum quantity  

Pf : Final linear momentum quantity  

Data

m₁= 0.220 kg : mass of  object₁

m₂= 0.345 kg : mass of  object₂

v₀₁ =  2.1 m/s ₁ , to the right : initial velocity of m₁

v₀₂=   6 m/s, to the right  i :initial velocity of m₂

Problem development

We appy the formula (1):

P₀ = Pf  

m₁*v₀₁ + m₂*v₀₂ = m₁*vf₁ + m₂*vf₂  

We assume that the two objects move to the right at the end of the collision, so, the sign of the final speeds is positive:

(0.22)*(2.1) + (0.345)*(6) = (0.22)*vf₁ +(0.345)*vf₂

2.532 = (0.22)*vf₁ +(0.345)*vf₂ Equation (1)

Because the shock is elastic, the coefficient of elastic restitution (e) is equal to 1.

e= \frac{v_{f2}-v_{f1} }{v_{o1} -v_{o2} }

1*(v₀₁ - v₀₂ )  = (vf₂ -vf₁)

(2.1 - 6 )  = (vf₂ -vf₁)

-3.9 =  (vf₂ -vf₁)

vf₂ = vf₁ - 3.9

vf₂ = vf₁ - 3.9 Equation (2)

We replace Equation (2) in the Equation (1)

2.532 = (0.22)*vf₁ +(0.345)*( vf₁ - 3.9)

2.532 = (0.22)*vf₁ +(0.345)* (vf₁) -(0.345)( 3.9)

2.532 + 1.3455 = (0.565)*vf₁

3.8775 = (0.565)*vf₁

vf₁  = (3.8775) / (0.565)

vf₁  = 6.86 m/s, to the right

We replace vf₁  = 6.86 m/s in the Equation (2)

vf₂ =  6.86 - 3.9

vf₂ =  2.96 m/s, to the right

8 0
3 years ago
Una patinadora de 50 kg parte del reposo y después de recorrer 3k alcanza una velocidad de 15 m/s. ¿Qué fuerza neta experimenta
e-lub [12.9K]

Answer:

F_{net} = 1.875\,N

Explanation:

Asúmase que la patinadora experimenta una aceleración constante. La fuerza neta experimentada por la patinadora:

F_{net} = (50\,kg)\cdot \left[\frac{\left(15\,\frac{m}{s}\right)^{2}-\left(0\,\frac{m}{s}\right)^{2} }{2\cdot (3000\,m)} \right]

F_{net} = 1.875\,N

6 0
3 years ago
At which points would the river be traveling the slowest?
Vesnalui [34]

Answer:

This would be traveling at the lower reaches.

Explanation:

A river would be traveling the fastest at the upper reaches and it becomes slower at the middle reaches and the slowest at the lower reaches. A place where water flows fast in a river is where the width is narrow and the bottom is steep. (This is just examples incase you would like to keep notes).

4 0
3 years ago
Light with an intensity of 1 kW/m2 falls normally on a surface and is completely absorbed. The radiation pressure is
kobusy [5.1K]

Answer:

The radiation pressure of the light is 3.33 x 10⁻⁶ Pa.

Explanation:

Given;

intensity of light, I = 1 kW/m²

The radiation pressure of light is given as;

Radiation \ Pressure = \frac{Flux \ density}{Speed \ of \ light}

I kW = 1000 J/s

The energy flux density = 1000 J/m².s

The speed of light = 3 x 10⁸ m/s

Thus, the radiation pressure of the light is calculated as;

Radiation \ pressure = \frac{1000}{3*10^{8}} \\\\Radiation \ pressure =3.33*10^{-6} \ Pa

Therefore, the radiation pressure of the light is 3.33 x 10⁻⁶ Pa.

6 0
3 years ago
Other questions:
  • True or False. Electromagnetic waves travel fastest through a vacuum.
    15·1 answer
  • Post Test: Force Fields
    13·1 answer
  • Calculate the average speed 
    7·1 answer
  • Acceleration can be best described as:
    6·1 answer
  • Of these electromagnetic waves, which has the...
    8·2 answers
  • The International Space Station (ISS) orbits Earth at an altitude of 400 km. Using this information, plus the mass and radius of
    8·1 answer
  • A young athlete has a mass of 42 kg. On a day when there is no wind she runs a 100m race in 14.2
    7·1 answer
  • No work is said to be done by standing man carrying 500kg load.why?​
    12·1 answer
  • What best describes the speed of light waves in solids, liquids, and gases?
    15·1 answer
  • Perform the following mathematical operation and report answer to the correct number of significant figures 143.6 divided by 21.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!