1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
3 years ago
9

A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 13.0 cm , giving it a ch

arge of -17.0 μC .
a) find the electric field just inside the paint layer. Express your answer using three significant figures.

b)Find the electric field just outside the paint layer. Express your answer using three significant figures.

c) Find the electric field 8.00 cm outside the surface of the paint layer.Express your answer using three significant figures.
Physics
1 answer:
Leokris [45]3 years ago
5 0

a) Electric field inside the paint layer: zero

b) Electric field just outside the paint layer: -3.62\cdot 10^7 N/C

c) Electric field 8.00 cm outside the paint layer: -7.27\cdot 10^7 N/C

Explanation:

a)

We can find the electric field inside the paint layer by applying Gauss Law: the total flux of the electric field through a gaussian surface is equal to the charge contained within the surface divided by the vacuum permittivity, mathematically:

\int EdS = \frac{q}{\epsilon_0}

where

E is the electric field

dS is the element of surface

q is the charge within the gaussian surface

\epsilon_0 = 8.85\cdot 10^{-12}F/m is the vacuum permittivity

Here we want to find the electric field just inside the paint layer, so we take a sphere of radius r as Gaussian surface, where

R = 6.5 cm = 0.065 m is the radius of the plastic sphere (half the diameter)

By taking the sphere of radius r, we note that the net charge inside this sphere is zero, therefore

q=0

So we have

\int E dS=0

which means that the electric field inside the paint layer is zero.

b)

Now we want to find the electric field just outside the paint layer: therefore, we take a Gaussian sphere of radius

r=R=0.065 m

The area of the surface is

A=4\pi R^2

And since the electric field is perpendicular to the surface at any point, Gauss Law becomes

E\cdot 4\pi R^2 = \frac{q}{\epsilon_0}

The charge included within the sphere in this case is the charge on the paint layer, therefore

q=-17.0\mu C=-17.0\cdot 10^{-6}C

So, the electric field is:

E=\frac{q}{4\pi \epsilon_0 R^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.065)^2}=-3.62\cdot 10^7 N/C

where the negative sign means the direction of the field is inward, since the charge is negative.

c)

Here we want to calculate the electric field 8.00 cm outside the surface of the paint layer.

Therefore, we have to take a Gaussian sphere of radius:

r=8.00 cm + R = 8.00 + 6.50 = 14.5 cm = 0.145 m

Gauss theorem this time becomes

E\cdot 4\pi r^2 = \frac{q}{\epsilon_0}

And the charge included within the sphere is again the charge on the paint layer,

q=-17.0\mu C=-17.0\cdot 10^{-6}C

Therefore, the electric field is

E=\frac{q}{4\pi \epsilon_0 r^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.145)^2}=-7.27\cdot 10^7 N/C

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

You might be interested in
How does the position of an object relate to the energy stored in an object?
Kamila [148]

Answer:

Potential Energy

Explanation:

Potential energy is the energy stored in an object due to it's position relative to some zero position. An object possesses gravitational potential energy if it is positioned at a height above (or below) the zero height.

4 0
2 years ago
a plane is flying due east in still air at 395 km/h. suddenly, the plane is hit by wind blowing at 55km/h toward the west. what
Sphinxa [80]
Let's be clear:  The plane's "395 km/hr" is speed relative to the
air, and the wind's "55 km/hr" is speed relative to the ground.

Before the wind hits, the plane moves east at 395 km/hr relative
to both the air AND the ground.

After the wind hits, the plane still maintains the same air-speed.
That is, its velocity relative to the air is still 395 km/hr east.
But the wind vector is added to the air-speed vector, and the
plane's velocity <span>relative to the ground drops to 340 km/hr east</span>.

6 0
3 years ago
A machine is rolling a metal cylinder under pressure. The radius of the cylinder is decreasing at a constant rate of 0.05 inches
Luden [163]
Yes, the volume of the cylinder will remain constant. As the radius decreases, the height will increase to make sure that the volume is kept the same.
We have been given a value of dr/dt and are required to find dh/dt
Because the volume is constant, we can plug it into the formula for the volume of the cylinder and rearrange it to make h the subject:
128 = πr²h
h = 128/πr²
Now we differentiate both sides:
dh/dr = -256/πr³
Applying the chain rule:
dh/dt = dh/dr x dr/dt
dh/dt = (-256/πr³) x -0.05
dh/dt = 64/5πr³; substituting the value of r
dh/dt = 64/5π(1.5)³
dh/dt = 1.21 in/sec
4 0
3 years ago
) Music. When a person sings, his or her vocal cords vibrate in a repetitive pattern that has the same frequency as the note tha
vaieri [72.5K]

(a) 0.0021 s, 2926.5 rad/s

The frequency of the B note is

f= 466 Hz

The time taken to make one complete cycle is equal to the period of the wave, which is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{466 Hz}=0.0021 s

The angular frequency instead is given by

\omega = 2\pi f

And substituting

f = 466 Hz

We find

\omega = 2\pi (466 Hz)=2926.5 rad/s

(b) 20 Hz, 125.6 rad/s

In this case, the period of the sound wave is

T = 50.0 ms = 0.050 s

So the frequency is equal to the reciprocal of the period:

f=\frac{1}{T}=\frac{1}{0.050 s}=20 Hz

While the angular frequency is given by:

\omega = 2\pi f = 2 \pi (20 Hz)=125.6 rad/s

(c) 4.30\cdot 10^{14} Hz, 7.48\cdot 1^{14} Hz, 2.33\cdot 10^{-15} s, 1.34\cdot 10^{-15}s

The minimum angular frequency of the light wave is

\omega_1 = 2.7\cdot 10^{15}rad/s

so the corresponding frequency is

f=\frac{\omega}{2 \pi}=\frac{2.7\cdot 10^{15}rad/s}{2\pi}=4.30\cdot 10^{14} Hz

and the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{4.30\cdot 10^{14}Hz}=2.33\cdot 10^{-15}s

The maximum angular frequency of the light wave is

\omega_2 = 4.7\cdot 10^{15}rad/s

so the corresponding frequency is

f=\frac{\omega}{2 \pi}=\frac{4.7\cdot 10^{15}rad/s}{2\pi}=7.48\cdot 10^{14} Hz

and the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{7.48\cdot 10^{14}Hz}=1.34\cdot 10^{-15}s

(d) 2.0\cdot 10^{-7}s, 3.14\cdot 10^{7} rad/s

In this case, the frequency is

f=5.0 MHz = 5.0 \cdot 10^6 Hz

So the period in this case is

T=\frac{1}{f}=\frac{1}{5.0\cdot 10^6  Hz}=2.0 \cdot 10^{-7} s

While the angular frequency is given by

\omega = 2\pi f=2 \pi (5.0\cdot 10^{6}Hz)=3.14\cdot 10^{7} rad/s

7 0
3 years ago
A horizontal beam of light of intensity 25 W/m2 is sent through two polarizing sheets. The polarizing direction of the first mak
Zina [86]

Answer:

option (B)

Explanation:

Intensity of unpolarised light, I = 25 W/m^2

When it passes from first polarisr, the intensity of light becomes

I'=\frac{I_{0}}{2}=\frac{25}{2}=12.5 W/m^{2}

Let the intensity of light as it passes from second polariser is I''.

According to the law of Malus

I'' = I' Cos^{2}\theta

Where, θ be the angle between the axis first polariser and the second polariser.

I'' = 12.5\times Cos^{2}15

I'' = 11.66 W/m^2

I'' = 11.7 W/m^2

7 0
3 years ago
Other questions:
  • 2. The Himalayas in central Asia are the tallest mountains in the world. But fossils of seashells can be found high in these mou
    13·1 answer
  • What is the net charge on a sphere that has the following? a) 5.29 x 10^6 electrons and 7.07 x 10^6 protons
    15·1 answer
  • A ski lift is used to transport people from the base of a hill to the top. If the lift leaves the
    9·1 answer
  • A block is held at rest against a wall by a force of magnitude F exerted at an angle theta from the horizontal, as shown in the
    6·1 answer
  • You are on a ParKour course. First you climb a angled wall up 9.5 meters. They you shimmy along the edge of a 3.5 meter long wal
    15·1 answer
  • A car accelerates uniformly in a straight line
    10·1 answer
  • Parallax error occurs when the observer records data when he/she is at an angle to the event he/she is observing. Where do you t
    13·1 answer
  • What is neccessary for a magnetic field to create electric current in a copper coil?
    13·1 answer
  • What type of tissue in the heart pumps blood throughout the body?
    12·1 answer
  • A sample from a meteorite that landed on Earth has been analyzed, and the result shows that out of every 1,000 nuclei of potassi
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!