Force [kgms^-2] = mass [kg] x acceleration [ms^-2]
Work = force x distance
Work = [kgms^-2] x [m]
Work = [kgm^2s^-2]
Here's the formula for the distance covered by an accelerating body in some amount of time ' T '. This formula is incredibly simple but incredibly useful. It pops up so often in Physics that you really should memorize it:
D = 1/2 a T²
Distance = (1/2)·(acceleration)·(time²)
This question gives us the acceleration and the distance, and we want to find the time.
(9,000 m) = (1/2) (20 m/s²) (time²)
(9,000 m) = (10 m/s²) (time²)
Divide each side by 10 m/s²:
(9,000 m) / (10 m/s²) = (time²)
900 s² = time²
Square root each side:
<em>T = 30 seconds</em>
Divide the change in speed by the time for the change.
Plant trees on places where forests have been chopped down to restore damaged ecosystems. Encourage individuals to live in a way that is environmentally friendly. Create parks to conserve the rainforests and animals. Companies that operate in environmentally friendly methods should be supported.
Answer:
The drag coefficient is
Explanation:
From the question we are told that
The density of air is 
The diameter of bottom part is
The power trend-line equation is mathematically represented as

let assume that the velocity is 20 m/s
Then


The drag coefficient is mathematically represented as

Where
is the drag force
is the density of the fluid
is the flow velocity
A is the area which mathematically evaluated as

substituting values


Then
