Answer:
k = 49 N/m
Explanation:
Given that,
Mass, m = 250 g = 0.25 kg
When the mass is attached to the end of the spring, it elongates 5 cm or 0.05 m. We need to find the spring constant. Let it is k.
The force due to mass is balanced by its weight as follows :
mg=kx

So, the spring constant of the spring is 49 N/m.
The charge on the electron is 1.6x10^-19C. So, 10^24 of them will be a charge of 1.6x10^5C, F = q1xq2/[(4pi epsilon nought)r^2]
Bohr's equation for the change in energy is

where
h = Planck's constant
c == the velocity of light
λ = wavelength.
The velocity is related to wavelength and frequency, f, by
c = fλ
Let us examine the given answers on the basis of the given equations.
a. As λ increases, f decreases and ΔE decreases.
TRUE
b. As λ increases, f increases and ΔE increases.
FALSE
c. As λ increases, f increases and ΔE decreases.
FALSE
Answer:
As the wavelength increases, the frequency decreases and energy decreases.
That will depend on the units of the 3.0. We need to know if it's 3 feet, 3 yards, 3 meters, or 3 miles. Each one will have a different answer.
Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.